
MapReduce and

Hadoop Distributed

File System

1

The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20000PB a day (2008)

 2010 census data is expected to be a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer

 programming models, and

 Supporting algorithms and data structures.

 NSF refers to it as “data-intensive computing” and industry calls it “big-
data” and “cloud computing”

2

Purpose of this talk

 To provide a simple introduction to:

 “The big-data computing” : An important
advancement that has a potential to impact
significantly the CS and undergraduate curriculum.

 A programming model called MapReduce for
processing “big-data”

 A supporting file system called Hadoop Distributed
File System (HDFS)

 To encourage educators to explore ways to infuse
relevant concepts of this emerging area into their
curriculum.

3

The Outline

 Introduction to MapReduce

 From CS Foundation to MapReduce

 MapReduce programming model

 Hadoop Distributed File System

 Relevance to Undergraduate Curriculum

 Demo (Internet access needed)

 Our experience with the framework

 Summary

 References

4

MapReduce
5

What is MapReduce?

 MapReduce is a programming model Google has used
successfully is processing its “big-data” sets (~ 20000 peta
bytes per day)

 Users specify the computation in terms of a map and a
reduce function,

 Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures,
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

6

From CS Foundations to MapReduce

Consider a large data collection:

{web, weed, green, sun, moon, land, part, web,
green,…}

Problem: Count the occurrences of the different words
in the collection.

Lets design a solution for this problem;
 We will start from scratch

 We will add and relax constraints

 We will do incremental design, improving the solution for
performance and scalability

7

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

ResultTable

Main

DataCollection

WordCounter

parse()
count()

{web, weed, green, sun, moon, land, part,
web, green,…}

8

Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Thread

DataCollection ResultTable

WordCounter

parse()
count()

Main

1..*1..*

Data
collection

Observe:
Multi-thread
Lock on shared data

9

Improve Word Counter for Performance

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

10

Peta-scale Data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

11

Addressing the Scale Issue

 Single machine cannot serve all the data: you need a distributed
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB
each
 Issue: With Mean time between failures (MTBF) or failure rate of

1/1000, then at least 1 of the above 1000 disks would be down at a
given time.

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing,
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations

12

Peta-scale Data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

13

Peta Scale Data is Commonly Distributed

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

14

Write Once Read Many (WORM) data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

15

WORM Data is Amenable to Parallelism

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM
characteristics : yields
to parallel processing;

2. Data without
dependencies: yields
to out of order
processing

16

Divide and Conquer: Provision Computing at Data Location

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input  <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault
tolerance + replication + monitoring +
load balancing to your base application!

One node

17

Mapper and Reducer

MapReduceTask

YourMapper
YourReducerParser

Counter

Mapper Reducer

Remember: MapReduce is simplified processing for larger data sets:
MapReduce Version of WordCount Source code

18

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

Map Operation

MAP: Input data  <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

…

19

Reduce

Reduce

Reduce

Reduce Operation

MAP: Input data  <key, value> pair

REDUCE: <key, value> pair  <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map
…

…

Map

…

20

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000

P-0001

P-0002

, count1

, count2

,count3

21

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example in my operating systems class

22

MapReduce Programming
Model

23

MapReduce programming model

 Determine if the problem is parallelizable and solvable using
MapReduce (ex: Is the data WORM?, large data set).

 Design and implement solution as Mapper classes and
Reducer class.

 Compile the source code with hadoop core.

 Package the code as jar executable.

 Configure the application (job) as to the number of mappers
and reducers (tasks), input and output streams

 Load the data (or use it on previously available data)

 Launch the job and monitor.

 Study the result.

 Detailed steps.

24

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism without

mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine and

partition (out of the scope of this talk).
 All the map should be completed before reduce operation starts.
 Map and reduce operations are typically performed by the same

physical processor.
 Number of map tasks and reduce tasks are configurable.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for operations.
 Special distributed file system. Example: Hadoop Distributed File

System and Hadoop Runtime.

25

Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.

 Simple algorithms such as grep, text-indexing, reverse
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial
objects.

 Expected to play a critical role in semantic web and web3.0

26

Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large

27

Hadoop
28

What is Hadoop?

 At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).

 The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.

29

Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

30

Hadoop Distributed File System

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
ReplicatedMore details: We discuss this in great detail in my Operating

Systems course

31

HDFS.ppt

Hadoop Distributed File System

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
ReplicatedMore details: We discuss this in great detail in my Operating

Systems course

heartbeat

blockmap

32

HDFS.ppt

Relevance and Impact on Undergraduate courses

 Data structures and algorithms: a new look at traditional
algorithms such as sort: Quicksort may not be your
choice! It is not easily parallelizable. Merge sort is better.

 You can identify mappers and reducers among your
algorithms. Mappers and reducers are simply place
holders for algorithms relevant for your applications.

 Large scale data and analytics are indeed concepts to
reckon with similar to how we addressed “programming
in the large” by OO concepts.

 While a full course on MR/HDFS may not be warranted,
the concepts perhaps can be woven into most courses in
our CS curriculum.

33

Demo

 VMware simulated Hadoop and MapReduce demo

 Remote access to NEXOS system at my Buffalo office

 5-node HDFS running HDFS on Ubuntu 8.04

 1 –name node and 4 data-nodes

 Each is an old commodity PC with 512 MB RAM,
120GB – 160GB external memory

 Zeus (namenode), datanodes: hermes, dionysus,
aphrodite, athena

34

Summary

 We introduced MapReduce programming model for
processing large scale data

 We discussed the supporting Hadoop Distributed
File System

 The concepts were illustrated using a simple example

 We reviewed some important parts of the source
code for the example.

 Relationship to Cloud Computing

35

References

1. Apache Hadoop Tutorial: http://hadoop.apache.org
http://hadoop.apache.org/core/docs/current/mapred_tu
torial.html

2. Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-113.

3. Cloudera Videos by Aaron Kimball:

http://www.cloudera.com/hadoop-training-basic

4. http://www.cse.buffalo.edu/faculty/bina/mapreduce.html

36

http://hadoop.apache.org/
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic

