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The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20000PB a day (2008)

 2010 census data is expected to be a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains 
from astronomy to healthcare has become essential for planning and 
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer 

 programming models, and

 Supporting algorithms and data structures.

 NSF refers to it as “data-intensive computing” and industry calls it “big-
data” and “cloud computing”

2



Purpose of this talk

 To provide a simple introduction to:

 “The big-data computing” : An important 
advancement that has a potential to impact 
significantly the CS and undergraduate curriculum. 

 A programming model called MapReduce for 
processing “big-data”

 A supporting file system called Hadoop Distributed 
File System (HDFS) 

 To encourage educators to explore ways to infuse 
relevant concepts of this emerging area into their 
curriculum.
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The Outline

 Introduction to MapReduce

 From CS Foundation to MapReduce

 MapReduce programming model

 Hadoop Distributed File System 

 Relevance to Undergraduate Curriculum

 Demo (Internet access needed)

 Our experience with the framework

 Summary

 References
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MapReduce
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What is MapReduce?

 MapReduce is a programming model Google has used 
successfully is processing its “big-data” sets (~ 20000 peta 
bytes per day)

 Users specify the computation in terms of a map and a 
reduce function, 

 Underlying runtime system automatically parallelizes the 
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures, 
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce: 
simplified data processing on large clusters. Communication of 
ACM 51, 1 (Jan. 2008), 107-113.
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From CS Foundations to MapReduce

Consider a large data collection: 

{web, weed, green, sun, moon, land, part, web, 
green,…}

Problem: Count the occurrences of the different words 
in the collection.

Lets design a solution for this problem; 
 We will start from scratch

 We will add and relax constraints 

 We will do incremental design, improving the solution for 
performance and scalability
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Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

ResultTable

Main

DataCollection

WordCounter

parse( )
count( )

{web, weed, green, sun, moon, land, part, 
web, green,…}
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Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Thread

DataCollection ResultTable

WordCounter

parse( )
count( )

Main

1..*1..*

Data
collection

Observe: 
Multi-thread
Lock on shared data
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Improve Word Counter for Performance 

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters
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Peta-scale Data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Addressing the Scale Issue

 Single machine cannot serve all the data: you need a distributed 
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB 
each
 Issue: With Mean time between failures (MTBF) or failure rate of 

1/1000, then at least 1 of the above 1000 disks would be down at a 
given time. 

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing, 
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations 
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Peta-scale Data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Peta Scale Data is Commonly Distributed 

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data
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Write Once Read Many (WORM) data

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection
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WORM Data is Amenable to Parallelism

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM 
characteristics : yields 
to parallel processing;  

2. Data without 
dependencies: yields 
to out of order 
processing
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Divide and Conquer: Provision Computing at Data Location

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input  <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault 
tolerance + replication + monitoring +
load balancing to your base application!

One node
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Mapper and Reducer

MapReduceTask

YourMapper
YourReducerParser

Counter

Mapper Reducer

Remember: MapReduce is simplified processing for larger data sets: 
MapReduce Version of WordCount Source code
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Map Operation

MAP: Input data  <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

…
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Reduce

Reduce

Reduce

Reduce Operation

MAP: Input data  <key, value> pair

REDUCE: <key, value> pair  <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map
…

…

Map

…
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Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000  

P-0001 

P-0002  

, count1

, count2

,count3
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Cat

Bat

Dog

Other 
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example in my operating systems class 
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MapReduce Programming 
Model
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MapReduce programming model

 Determine if the problem is parallelizable and solvable using 
MapReduce (ex: Is the data WORM?, large data set).

 Design and implement solution as Mapper classes and 
Reducer class. 

 Compile the source code with hadoop core.

 Package the code as jar executable.

 Configure the application (job) as to the number of mappers 
and reducers (tasks), input and output streams

 Load the data (or use it on previously available data)

 Launch the job and monitor.

 Study the result.

 Detailed steps.
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MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism without 

mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine and 

partition (out of the scope of this talk).
 All the map should be completed before reduce operation starts.
 Map and reduce operations are typically performed by the same 

physical processor.
 Number of map tasks and reduce tasks are configurable.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for operations.
 Special distributed file system. Example: Hadoop Distributed File 

System and Hadoop Runtime.
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Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank, 
indexing data. 

 Simple algorithms such as grep, text-indexing, reverse 
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial 
objects.

 Expected to play a critical role in semantic web and web3.0
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Scope of MapReduce 

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large
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Hadoop
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What is Hadoop?

 At Google MapReduce operation are run on a special 
file system called Google File System (GFS) that is 
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the 
GFS and called it Hadoop Distributed File System 
(HDFS).

 The software framework that supports HDFS, 
MapReduce and other related entities is called  the 
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.
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Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware 
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Hadoop Distributed File System

Application

Local file 
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
ReplicatedMore details: We discuss this in great detail in my Operating 

Systems course
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Hadoop Distributed File System

Application

Local file 
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
ReplicatedMore details: We discuss this in great detail in my Operating 

Systems course

heartbeat

blockmap
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Relevance and Impact on Undergraduate courses

 Data structures and algorithms: a new look at traditional 
algorithms such as sort: Quicksort may not be your 
choice! It is not easily parallelizable. Merge sort is better.

 You can identify mappers and reducers among your 
algorithms. Mappers and reducers are simply place 
holders for algorithms relevant for your applications. 

 Large scale data and analytics are indeed concepts to 
reckon with similar to how we addressed “programming 
in the large” by OO concepts.

 While a full course on MR/HDFS may not be warranted, 
the concepts perhaps can be woven into most courses in 
our CS curriculum.
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Demo

 VMware  simulated Hadoop and MapReduce demo

 Remote access to NEXOS system at my Buffalo office

 5-node HDFS running HDFS on Ubuntu 8.04

 1 –name node and 4 data-nodes

 Each is an old commodity PC with 512 MB RAM, 
120GB – 160GB external memory

 Zeus (namenode),  datanodes: hermes, dionysus, 
aphrodite, athena
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Summary

 We introduced MapReduce programming model for 
processing large scale data

 We discussed the supporting Hadoop Distributed 
File System

 The concepts were illustrated using a simple example

 We reviewed some important parts of the source 
code for the example.

 Relationship to Cloud Computing 
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