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Branch and Bound
Searching Strategies
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Feasible Solution vs. 
Optimal Solution
 DFS, BFS, hill climbing and best-first 

search can be used to solve some 
searching problem for searching a 
feasible solution.

 However, they cannot be used to solve 
the optimization problems for searching 
an (the) optimal solution.
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The branch-and-bound 
strategy

 This strategy can be used to 
solve optimization problems 
without an exhaustive search in 
the average case. 
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Branch-and-bound strategy

 2 mechanisms:

 A mechanism to generate branches when 
searching the solution space

 A mechanism to generate a bound so that 
many braches can be terminated
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Branch-and-bound strategy

 It is efficient in the average case because 
many branches can be terminated very 
early.

 Although it is usually very efficient, a very 
large tree may be generated in the worst 
case.

 Many NP-hard problem can be solved by 
B&B efficiently in the average case; 
however, the worst case time complexity is 
still exponential.
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A Multi-Stage Graph Searching 
Problem.

Find the shortest path from V0 to V3
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E.G.:A Multi-Stage Graph Searching Problem
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Solved by branch-and-bound 
(hill-climbing with bounds)

A feasible solution is found whose cost is equal to 5. 
An upper bound of the optimal solution is first found here.



 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nods)

0



Optimal

For Minimization Problems



 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Lower Bound
(for feasible solutions)

0



Optimal

For Maximization Problems

Upper Bound
(for expanding nods)
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The traveling salesperson 
optimization problem

 Given a graph, the TSP Optimization problem
is to find a tour, starting from any vertex,
visiting every other vertex and returning to
the starting vertex, with minimal cost.

 It is NP-hard.

 We try to avoid n! exhaustive search by the
branch-and-bound technique on the average
case. (Recall that O(n!)>O(2n).)
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The traveling salesperson 
optimization problem

 E.g. A Cost Matrix for a Traveling Salesperson Problem.

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞
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The basic idea 

 There is a way to split the solution space 
(branch)

 There is a way to predict a lower bound for a 
class of solutions. There is also a way to find 
a upper bound of an optimal solution. If the 
lower bound of a solution exceeds the upper 
bound, this solution cannot be optimal and 
thus we should terminate the branching 
associated with this solution. 
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Splitting

 We split a solution into two groups:

 One group including a particular arc

 The other excluding the arc

 Each splitting incurs a lower bound and 
we shall traverse the searching tree 
with the “lower” lower bound.
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The traveling salesperson 
optimization problem

 The Cost Matrix for a Traveling Salesperson Problem.

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

Step 1 to reduce: Search each row for the smallest value

from i

to  j
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The traveling salesperson 
optimization problem

 Reduced cost matrix:

A Reduced Cost Matrix.

j
i

1 2 3 4 5 6 7

1 ∞ 0 90 10 30 6 54 (-3)

2 0 ∞ 73 38 17 12 30 (-4)

3 29 1 ∞ 20 0 12 9 (-16)

4 32 83 73 ∞ 49 0 84 (-7)

5 3 21 63 8 ∞ 0 32 (-25)

6 0 85 15 43 89 ∞ 4 (-3)

7 18 0 7 1 58 13 ∞ (-26)

reduced:84

Step 2 to reduce: Search each column for the smallest value
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j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞ 19 0 12 5

4 32 83 66 ∞ 49 0 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

(-7) (-1) (-4)

The traveling salesperson 
optimization problem
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Lower bound

 The total cost of 84+12=96 is 
subtracted. Thus, we know the lower 
bound of feasible solutions to this TSP 
problem is 96.
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 Total cost reduced: 84+7+1+4 = 96 (lower bound)

decision tree: 

The Highest Level of a Decision Tree.

 If we use arc 3-5 to split, the difference on the lower 
bounds is 17+1 = 18. 

The traveling salesperson 
optimization problem



Heuristic to select an arc to split the 
solution space

 If an arc of cost 0 (x) is selected, then 
the lower bound is added by 0 (x) when 
the arc is included.

 If an arc <i,j> is not included, then the 
cost of the second smallest value (y) in 
row i and the second smallest value (z) 
in column j is added to the lower 
bound.

 Select the arc with the largest (y+z)-x
20
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For the right subtree 
(Arc 4-6 is excluded)

We only have to set c4-6 to be .

21

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞

∞

19 0 12 5

4 32 83 66 ∞ 49 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞
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For the left subtree 
(Arc 4-6 is included)

j 

i 

1 2 3 4 5 7 

1 ∞  0 83 9 30 50 

2 0 ∞  66 37 17 26 

3 29 1 ∞  19 0 5 

5 3 21 56 7 ∞  28 

6 0 85 8 ∞  89 0 

7 18 0 0 0 58 ∞  

 A Reduced Cost Matrix if Arc 4-6 is included. 

1. 4th row is deleted.

2. 6th column is deleted.

3. We must set c6-4 to be . (The reason will be clear later.)
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For the left subtree

 The cost matrix for all solution with arc 4-6:

A Reduced Cost Matrix for that in Table 6-6.

 Total cost reduced: 96+3 = 99 (new lower bound)

j

i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50

2 0 ∞ 66 37 17 26

3 29 1 ∞ 19 0 5

5 0 18 53 4 ∞ 25 (-3)

6 0 85 8 ∞ 89 0

7 18 0 0 0 58 ∞
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Upper bound

 We follow the best-first search scheme 
and can obtain a feasible solution with 
cost C.

 C serves as an upper bound of the 
optimal solution and many branches 
may be terminated if their lower bounds 
are equal to or larger than C.



25

Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson 
Problem.
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Preventing an arc 

 In general, if paths i1-i2-…-im and j1-j2-…-jn have 

already been included and a path from im to j1 is 
to be added, then path from jn to i1 must be 
prevented (by assigning the cost of jn to i1 to be )

 For example, if 4-6, 2-1 are included and 1-4 is to 
be added, we must prevent 6-2 from being used 
by setting c6-2=.  If 6-2 is used, there will be a 
loop which is forbidden.
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The 0/1 knapsack problem

 Positive integer P1, P2, …, Pn (profit)

W1, W2, …, Wn (weight)

M (capacity)

maximize P Xi i
i

n




1

  

subject to W X Mi i
i

n





1

 Xi = 0 or 1, i =1, …, n. 

The problem is modified: 

minimize 


 P Xi i
i

n

1
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The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound 
Strategy to Solve 0/1 Knapsack Problem.
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How to find the upper bound?

 Ans: by quickly finding a feasible 
solution in a greedy manner: starting 
from the smallest available i, scanning 
towards the largest i’s until M is 

exceeded. The upper bound can be 
calculated.
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The 0/1 knapsack problem

 E.g. n = 6, M = 34

 A feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0,

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi  Pi+1/Wi+1)
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How to find the lower bound?

 Ans: by relaxing our restriction from Xi = 0 or 1 to 
0  Xi  1 (knapsack problem)

Let 


P Xi i
i

n

1

 be an optimal solution for 0/1 

knapsack problem and  


P Xi
i

n

i
1

 be an optimal 

solution for fractional knapsack problem. Let 

Y=


P Xi i
i

n

1

, Y’ =   


P Xi
i

n

i
1

. 

 Y’  Y 
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The knapsack problem

 We can use the greedy method to find an optimal solution 
for knapsack problem.

 For example, for the state of X1=1 and X2=1, we have

X1 = 1, X2 =1, X3 = (34-6-10)/8=5/8, X4 = 0, X5 = 0, X6 =0
-(P1+P2+5/8P3) = -18.5 (lower bound)
-18 is our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)
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How to expand the tree?

 By the best-first search scheme

 That is, by expanding the node with the 
best lower bound. If two nodes have 
the same lower bounds, expand the 
node with the lower upper bound.



340/1 Knapsack Problem Solved by Branch-and-Bound Strategy
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 Node 2 is terminated because its lower 
bound is equal to the upper bound of 
node 14.

 Nodes 16, 18 and others are terminated 
because the local lower bound is equal 
to the local upper bound. 
(lower bound  optimal solution  upper 
bound)
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The A* algorithm

 Used to solve optimization problems.

 Using the best-first strategy.

 If a feasible solution (goal node) is selected to expand, then
it is optimal and we can stop.

 Estimated cost function of a node n : f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): “real” cost from node n to a goal node.

f*(n): “real” cost of node n

h(n)  h*(n)

 f(n) = g(n) + h(n)  g(n)+h*(n) = f*(n) …………. (1)

Estimated further cost should never 
exceed the real further cost.
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Reasoning
 Let t be the selected goal node. We have 

f*(t)=f(t)+h(t)=f(t)+0=f(t)…..(2)

 Assume that t is not the optimal node. There must 
exist one node, say s, that has been generated but 
not selected and that will lead to the optimal node.

 Since we take the best first search strategy, we have 
f (t)f(s)……(3).

 We have f*(t)=f(t)f(s)f*(s) by Eqs. (1), (2) and 
(3), which means that s is not the node leading to 
the optimal node. Contradiction occurs.

 Therefore, t is the optimal node.
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The A* algorithm

 Stop when the selected node is also a goal node. It is
optimal iff h(n)h*(n)

 E.g.: To find a shortest path from node s to node t
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The A* algorithm

 Step 1.

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4 

g(B)=4 h(B)=min{2}=2 f(B)=4+2=6 

g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5 
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The A* algorithm

 Step 2. Expand A

g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5 

g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7 
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The A* algorithm

 Step 3. Expand C

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6 

g(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10 
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The A* algorithm
 Step 4. Expand D

g(H)=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10 

g(I)=2+2+3=7 h(I)=0 f(I)=7+0=7 
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The A* algorithm
 Step 5. Expand B

g(J)=4+2=6 h(J)=min{5}=5 f(J)=6+5=11 
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The A* algorithm

 Step 6. Expand F

g(K)=3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11 

g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8 
 

I is selected to expand.
The A* algorithm stops,
since I is a goal node.
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The A* Algorithm

 Can be considered as a special type of 
branch-and-bound algorithm.

 When the first feasible solution is found, 
all nodes in the heap (priority queue) 
are terminated.

 * stands for “real”

 “A* algorithm” stands for 
“real good algorithm”



Q&A

46


