Branch and Bound

!'_ Searching Strategies

Feasible Solution vs.

Optimal Solution

= DFS, BFS, hill climbing and best-first
search can be used to solve some
searching problem for searching a
feasible solution.

= However, they cannot be used to solve
the optimization problems for searching
an (the) optimal solution.

The branch-and-bound

‘L strategy

= This strategy can be used to
solve optimization problems
without an exhaustive search in
the average case.

i Branch-and-bound strategy

= 2 mechanisms:

= A mechanism to generate branches when
searching the solution space

= A mechanism to generate a bound so that
many braches can be terminated

i Branch-and-bound strategy

= It is efficient in the average case because
many branches can be terminated very
early.

= Although it is usually very efficient, a very
large tree may be generated in the worst
case.

= Many NP-hard problem can be solved by
B&B efficiently in the average case;
however, the worst case time complexity is
still exponential.

Problem.
Find the shortest path from V, to V;

i A Multi-Stage Graph Searching

Vi Vo

‘L E.G.:A Multi-Stage Graph Searching Problem

Solved by branch-and-bound
s (hill-climbing with bounds)

1 3 4
ol -
1
1 3 . - N

Vi Vi o V)3
1O 1(e) 30 o
5 3) |2 7 s Eck‘\r\c‘:ﬁL&
Va9 V2.3
Va1 Va3 =2, V2,2 3 ; ' A pand, -
OB OO OION D S
X x X X = OKE Y
=6 =L 1 =7 >4 =634 |1 =9 >4

jC—&ms|b|t SUK}J\"'I‘_OH :
L LL?PQ\/- bD\M\C\:W

‘_L For Minimization Problems

o0

Upper Bound
‘ (for feasible solutions)

Optimal

= Usually, LB<UB.

= If LB>UB, the expanding node can be terminated.

1 §

Lower Bound
(for expanding nods)

0

‘_L For Maximization Problems

o0

Upper Bound
‘ (for expanding nods)

= Usually, LB<UB. .
! Optimal

= If LB>UB, the expanding node can be terminated.

1 §

Lower Bound
(for feasible solutions)

0

10

The traveling salesperson
i optimization problem

= Given a graph, the TSP Optimization problem
is to find a tour, starting from any vertex,
visiting every other vertex and returning to
the starting vertex, with minimal cost.

= It is NP-hard.

= We try to avoid n! exhaustive search by the
branch-and-bound technique on the average
case. (Recall that O(n!)>0(2").)

The traveling salesperson

optimization problem

= E.g. A Cost Matrix for a Traveling Salesperson Problem.

jl1 2 3 4 5 6 7T
|

1 o 3 93 13 33 9 57
2 |4 o 77T 42 21 16 34
3 |45 17 o 36 16 28 25
4 [39 9 80 <« 5 7 91
5 |28 4 8 33 o« 25 57
6 |3 88 18 46 92 o 7
7 |44 26 33 27 8 39

i The basic idea

= [here is a way to split the solution space
(branch)

= There is a way to predict a lower bound for a
class of solutions. There is also a way to find
a upper bound of an optimal solution. If the
lower bound of a solution exceeds the upper
bound, this solution cannot be optimal and
thus we should terminate the branching
associated with this solution.

i Splitting

= We split a solution into two groups:
= One group including a particular arc
= The other excluding the arc

= Each splitting incurs a lower bound and
we shall traverse the searching tree
with the “lower” lower bound.

The traveling salesperson

optimization problem

= The Cost Matrix for a Traveling Salesperson Problem.

Step 1 to rec

uce: Search each row for the smallest value

to j

fromi

jl1r 2 3 4 5 6 7
|

1 |o 3 93 13 33 9 57
2 | 4 o 77 42 21 16 34
3 |45 17 « 36 16 28 25
4 |39 9 8 o 5 7 91
5 |28 46 8 33 o 25 57
6 | 3 88 18 46 92 o« 7
7 |44 26 33 27 8 39

15

Step 2 to reduce: Search each column for the smallest value

The traveling salesperson
i optimization problem

s Reduced cost matrix:

(S

1 2 3 4 5 6 I

0 90 10 30 6 54 (-3)

0 00 73 38 17 12 30 (-4)
29 1 o 20 0 12 9 (-16)

32 83 73 o 49 0 84 (-7)
3 21 63 8 00 0 32 (-25)

0 85 15 43 89 00 4 (-3)
18 0 7 1 58 13 o (-26)
reduced:84

~N O O A WO DN B |-

A Reduced Cost Matrix. 16

The traveling salesperson
optimization problem

J

1 2 3 4 5 6 I

~ (o)) o1 NN w N = | -

00 0 83 9 30 6 50
0 0 66 37 17 12 26
29 1 00 19 0 12 5
32 83 66 00 49 0 80
3 21 56 [0 0 28
0 85 8 42 89 0 0
18 0 0 0 58 13 00
-7 (1) (-4)
Table 6-5 Another Reduced Cost Matrix.

i Lower bound

= The total cost of 84+12=96 is
subtracted. Thus, we know the lower
bound of feasible solutions to this TSP
problem is 96.

The traveling salesperson
i optimization problem

= Total cost reduced: 84+7+1+4 = 96 (lower bound)
decision tree:

All solutions Lower bound = 96

All solutions
with arc 4-6

Lower bound = 96 Lower bound = 96+32 =128

All solutions
without arc 4-6

The Highest Level of a Decision Tree.

= If we use arc 3-5 to split, the difference on the lower
bounds is 17+1 = 18.

solution space

i Heuristic to select an arc to split the

= If an arc of cost 0 (x) is selected, then
the lower bound is added by 0 (x) when
the arc is included.

= If an arc <i,j> is not included, then the
cost of the second smallest value (y) in
row i and the second smallest value (z)
in column j is added to the lower
bound.

= Select the arc with the largest (y+z)-x

We only have to set c4-6 to be .

For the right subtree

(Arc 4-6 is excluded)

il 1 2 3 4 5 6 7
|

1 0 0 83 9 30 6 50
2 0 © 66 37 17 12 26
3 29 1 o 19 0 12 5
4 |32 8 66 o 49 oo 80
5 3 21 56 7 0 0 28
6 0 8 8 42 89 @ w 0
7 18 0 0 0 58 13 o

21

(Arc 4-6 is included)

i For the left subtree

il 127134517

o0 0 83 9 30 | 50

0 c© | 66 | 37 | 17 | 26

1 CO 19 0 5

3 21 | 56 7 oo | 28

OO WD |=—
N
(@

0 |8 | 8 ()] 8 | 0

7 18 0 0 0 58 |

A Reduced Cost Matrix if Arc 4-6 is included.
1. 4t row is deleted.
2. 6™ column is deleted.
3. We must set c6-4 to be oo. (The reason will be clear later.)

For the left subtree

= The cost matrix for all solution with arc 4-6:

jl1 2 3 4 5 7
i

o 0 83 9 30 50
0 o 66 37 17 26
29 1 o 19 O 5
0 18 53 4 o 25 (-3)
0O 8 8 «o 89 0
18 O 0 0 58 o
A Reduced Cost Matrix for that in Table 6-6.

= [otal cost reduced: 96+3 = 99 (new lower bound)

~N OO O1T W N -

i Upper bound

x We follow the best-first search scheme
and can obtain a feasible solution with
cost C.

= C serves as an upper bound of the
optimal solution and many branches
may be terminated if their lower bounds
are equal to or larger than C.

@\\ {XPQh&RY\g o A (S?XGC”C‘JY‘? 0¥ dQY)

* o add\vg ovder All | LB.=96
. ® | With4-6 { L.B.=99 Without 4-6 P 1. B.=128
- / Node to be terminated
|
(2)| With3-5 pLB=99 | Without 3-5 4 L.B.=117 Node to be
expanded
(3| With2-1 PLB.=112 Without 2-1 [, L.B.=125 Node to be
expanded
ith 1- _ : _ _ Node to be
With 1-4 [71.B.=126 Without 1-4 [¥1..B.=153 terminated
With 6-7 | L.B.=126 Without 6-7 | L.B.=141 ﬁ?&ﬁ&;’ﬂgg
With 5-2 | LB.=126 Without 5-2 | No solution %)
With 7-3 |Solution Without 7-3 | No solution

1467352
Cost=126 (Tegsible so\yFon) (Uppex \’)ouv\A\B 7

Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson
Problem.

i Preventing an arc

= In general, if paths i;-i,-...-i; and j;-j,-...-],, have
already been included and a path from i, to j, is
to be added, then path from j, to i; must be
prevented (by assigning the cost of j, to i; to be «)

= For example, if 4-6, 2-1 are included and 1-4 is to
e added, we must prevent 6-2 from being used

py setting c6-2=w0. If 6-2 is used, there will be a
oop which is forbidden.

i The 0/1 knapsack problem

= Positive integer P,, P,, ..., P, (profit)
W,, W,, ..., W_(weight)
M (capacity)
n
maximize > PiX;
i=1

n

subjectto > WiX; <M X.=0orl,i=l, ..., n.
i=1

The problem is modified:

n
minimize — > P X;
i=1

i The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound
Strategy to Solve 0/1 Knapsack Problem.

i How to find the upper bound?

= Ans: by quickly finding a feasible
solution in a greedy manner: starting
from the smallest available i, scanning
towards the largest i’s until M is
exceeded. The upper bound can be
calculated.

i The 0/1 knapsack problem

= Eg.n=6,M=34

W. 10 19 8 10 12 8

(PJW, > P.../W.,.)

i+1 I

= Afeasible solution: X, =1,X,=1,X;=0,X,=0,
Xe=0,X,=0
-(P,+P,) = -16 (upper bound)
Any solution higher than -16 can not be an optimal solution.

i How to find the lower bound?

= Ans: by relaxing our restriction from X; = 0 or 1 to
0 <X <1 (knapsack problem)

n
Let —> P;X; be an optimal solution for 0/1
i=1

n

knapsack problem and —) P, X! be an optimal
i=1

solution for fractional knapsack problem. Let

n n
Y:—ZPiXi,Y — —ZP|X;
’izl =1

=Y <Y

i The knapsack problem

= We can use the greedy method to find an optimal solution
for knapsack problem.

= For example, for the state of X;=1 and X,=1, we have
X; =1, X, =1, X; = (34-6-10)/8=5/8, X, = 0, X = 0, X, =0
-(P,+P,+5/8P;) = -18.5 (lower bound)

-18 is our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)

i How to expand the tree?

= By the best-first search scheme

= That is, by expanding the node with the
best lower bound. If two nodes have
the same lower bounds, expand the
node with the lower upper bound.

i {KPGJ_'“UJ&\ n QV‘Q‘)\Q\— UB.=16
O | LB=18
2 Neop T
O~ 14 \
P L Lien "Y‘AEY X;= =0
UB=-16 U.B.=-14
| L.B.:-IS 'G L.B.=-17)/ _|r7
=0
UB.=15
' L.B.=18
(a good upper bound
is found here)
X3=1 L Xa=0 Xy=1 X3=0
U.B.=-16 U.B.=-15 UB.=-17 >«
5 |infeasible| 6 || B s fo L.B.=-18 7 14 |LB=18
= l/l) =1 =0 =1 _
A X4U1(3) y , Xd= X4=0
B.=- U.B.=-15 UB.=16 U.B.=-17
7 linfeasile| & [LB.=-18 '5 LB.=-18 PU 22 ce=is B[15 |Uas 16
U.B.=-16
B.=-16~ X
=] E’ X5=0 Xs—l \ Xs5=0 X5=] \ X5= 0 X5:1 =0
U.B.=-16 U.B.=-17
9 linteasivle] 10| 5o 1s | 27 |infeasible LB=18 | 18-
U.B.=-15
B.=15/7°
=] Xe= 0 =1 X6=0
' 5
U.B.=-16
11 infeasible 12 L.B.=-16 29 infeasible infeasible 20
< < UB.=-17
L.B.=17

0/1 Knapsack Problem Solved by Branch-and-Bound Strategy 34

= Node 2 is terminated because its lower
bound is equal to the upper bound of
node 14.

= Nodes 16, 18 and others are terminated
because the local lower bound is equal
to the local upper bound.
(lower bound < optimal solution < upper
bound)

‘L The A* algorithm

= Used to solve optimization problems.
= Using the best-first strategy.

= If a feasible solution (goal node) is selected to expand, then
it is optimal and we can stop.

= Estimated cost function of a node n : f(n)
f(n) = g(n) + h(n)
g(n): cost from root to node n.
h(n): estimated cost from node n to a goal node.

h*(n): “real” cost from node n to a goal node.
f*(n): “real” cost of node n
h(n) < h*(n)

= f(n) = g(n) + h(n) < g(n)+h*(n) = f'(n) (1) =

Reasoning

= Let t be the selected goal node. We have
f*(t)=f(t)+h(t)=f(t)+0=f(t).....(2)
s Assume that t is not the optimal node. There must

exist one node, say s, that has been generated but
not selected and that will lead to the optimal node.

= Since we take the best first search strategy, we have
f (£)<f(s)......(3).

= We have f*(t)=f(t)<f(s)<f*(s) by Egs. (1), (2) and
(3), which means that s is not the node leading to
the optimal node. Contradiction occurs.

= Therefore, t is the optimal node.

i The A* algorithm

= Stop when the selected node is also a goal node. It is
optimal iff h(n)<h*(n)
= E.g.: To find a shortest path from node s to node t

i The A* algorithm

= Step 1.

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4
g(B)=4 h(B)=min{2}=2 f(B)=4+2=6
g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5

i The A* algorithm

= Step 2. Expand A

g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5
g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7

i The A* algorithm

= Step 3. Expand C

|
@ﬁé

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6
9(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10

The A* algorithm

= Step 4. Expand D

N
e ,@{
AL

9("')=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10
g(l)=2+2+3=7 h(1)=0 f(1)=7+0=7

The A* algorithm

= Step 5. Expand B

@ OO

7 11 &

°>.

g(J)=4+2=6 h(Q)=min{5}=5 f(J)=6+5=11

i The A* algorithm

= Step 6. Expand F

3
a bl C
2

I is selected to expand.
C% G{, The A* algorithm stops,
2 ey) ‘;‘/3 '\ sincelis a goal node.
@ O
@ @

120,

3 %é h1\3 %2

S

X ¥
g(K) 3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11
g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8

i The A* Algorithm

= Can be considered as a special type of
branch-and-bound algorithm.

= When the first feasible solution is found,
all nodes in the heap (priority queue)
are terminated.

s * stands for “rea

= "A* algorithm” stands for
“real good algorithm”

III

