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Branch and Bound
Searching Strategies
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Feasible Solution vs. 
Optimal Solution
 DFS, BFS, hill climbing and best-first 

search can be used to solve some 
searching problem for searching a 
feasible solution.

 However, they cannot be used to solve 
the optimization problems for searching 
an (the) optimal solution.



3

The branch-and-bound 
strategy

 This strategy can be used to 
solve optimization problems 
without an exhaustive search in 
the average case. 
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Branch-and-bound strategy

 2 mechanisms:

 A mechanism to generate branches when 
searching the solution space

 A mechanism to generate a bound so that 
many braches can be terminated
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Branch-and-bound strategy

 It is efficient in the average case because 
many branches can be terminated very 
early.

 Although it is usually very efficient, a very 
large tree may be generated in the worst 
case.

 Many NP-hard problem can be solved by 
B&B efficiently in the average case; 
however, the worst case time complexity is 
still exponential.
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A Multi-Stage Graph Searching 
Problem.

Find the shortest path from V0 to V3
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E.G.:A Multi-Stage Graph Searching Problem
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Solved by branch-and-bound 
(hill-climbing with bounds)

A feasible solution is found whose cost is equal to 5. 
An upper bound of the optimal solution is first found here.



 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nods)

0



Optimal

For Minimization Problems



 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Lower Bound
(for feasible solutions)

0



Optimal

For Maximization Problems

Upper Bound
(for expanding nods)
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The traveling salesperson 
optimization problem

 Given a graph, the TSP Optimization problem
is to find a tour, starting from any vertex,
visiting every other vertex and returning to
the starting vertex, with minimal cost.

 It is NP-hard.

 We try to avoid n! exhaustive search by the
branch-and-bound technique on the average
case. (Recall that O(n!)>O(2n).)
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The traveling salesperson 
optimization problem

 E.g. A Cost Matrix for a Traveling Salesperson Problem.

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞
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The basic idea 

 There is a way to split the solution space 
(branch)

 There is a way to predict a lower bound for a 
class of solutions. There is also a way to find 
a upper bound of an optimal solution. If the 
lower bound of a solution exceeds the upper 
bound, this solution cannot be optimal and 
thus we should terminate the branching 
associated with this solution. 
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Splitting

 We split a solution into two groups:

 One group including a particular arc

 The other excluding the arc

 Each splitting incurs a lower bound and 
we shall traverse the searching tree 
with the “lower” lower bound.
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The traveling salesperson 
optimization problem

 The Cost Matrix for a Traveling Salesperson Problem.

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

Step 1 to reduce: Search each row for the smallest value

from i

to  j
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The traveling salesperson 
optimization problem

 Reduced cost matrix:

A Reduced Cost Matrix.

j
i

1 2 3 4 5 6 7

1 ∞ 0 90 10 30 6 54 (-3)

2 0 ∞ 73 38 17 12 30 (-4)

3 29 1 ∞ 20 0 12 9 (-16)

4 32 83 73 ∞ 49 0 84 (-7)

5 3 21 63 8 ∞ 0 32 (-25)

6 0 85 15 43 89 ∞ 4 (-3)

7 18 0 7 1 58 13 ∞ (-26)

reduced:84

Step 2 to reduce: Search each column for the smallest value



17Table 6-5 Another Reduced Cost Matrix.

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞ 19 0 12 5

4 32 83 66 ∞ 49 0 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

(-7) (-1) (-4)

The traveling salesperson 
optimization problem
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Lower bound

 The total cost of 84+12=96 is 
subtracted. Thus, we know the lower 
bound of feasible solutions to this TSP 
problem is 96.
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 Total cost reduced: 84+7+1+4 = 96 (lower bound)

decision tree: 

The Highest Level of a Decision Tree.

 If we use arc 3-5 to split, the difference on the lower 
bounds is 17+1 = 18. 

The traveling salesperson 
optimization problem



Heuristic to select an arc to split the 
solution space

 If an arc of cost 0 (x) is selected, then 
the lower bound is added by 0 (x) when 
the arc is included.

 If an arc <i,j> is not included, then the 
cost of the second smallest value (y) in 
row i and the second smallest value (z) 
in column j is added to the lower 
bound.

 Select the arc with the largest (y+z)-x
20
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For the right subtree 
(Arc 4-6 is excluded)

We only have to set c4-6 to be .

21

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞

∞

19 0 12 5

4 32 83 66 ∞ 49 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞
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For the left subtree 
(Arc 4-6 is included)

j 

i 

1 2 3 4 5 7 

1 ∞  0 83 9 30 50 

2 0 ∞  66 37 17 26 

3 29 1 ∞  19 0 5 

5 3 21 56 7 ∞  28 

6 0 85 8 ∞  89 0 

7 18 0 0 0 58 ∞  

 A Reduced Cost Matrix if Arc 4-6 is included. 

1. 4th row is deleted.

2. 6th column is deleted.

3. We must set c6-4 to be . (The reason will be clear later.)
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For the left subtree

 The cost matrix for all solution with arc 4-6:

A Reduced Cost Matrix for that in Table 6-6.

 Total cost reduced: 96+3 = 99 (new lower bound)

j

i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50

2 0 ∞ 66 37 17 26

3 29 1 ∞ 19 0 5

5 0 18 53 4 ∞ 25 (-3)

6 0 85 8 ∞ 89 0

7 18 0 0 0 58 ∞
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Upper bound

 We follow the best-first search scheme 
and can obtain a feasible solution with 
cost C.

 C serves as an upper bound of the 
optimal solution and many branches 
may be terminated if their lower bounds 
are equal to or larger than C.
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Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson 
Problem.
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Preventing an arc 

 In general, if paths i1-i2-…-im and j1-j2-…-jn have 

already been included and a path from im to j1 is 
to be added, then path from jn to i1 must be 
prevented (by assigning the cost of jn to i1 to be )

 For example, if 4-6, 2-1 are included and 1-4 is to 
be added, we must prevent 6-2 from being used 
by setting c6-2=.  If 6-2 is used, there will be a 
loop which is forbidden.
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The 0/1 knapsack problem

 Positive integer P1, P2, …, Pn (profit)

W1, W2, …, Wn (weight)

M (capacity)

maximize P Xi i
i

n




1

  

subject to W X Mi i
i

n





1

 Xi = 0 or 1, i =1, …, n. 

The problem is modified: 

minimize 


 P Xi i
i

n

1
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The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound 
Strategy to Solve 0/1 Knapsack Problem.
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How to find the upper bound?

 Ans: by quickly finding a feasible 
solution in a greedy manner: starting 
from the smallest available i, scanning 
towards the largest i’s until M is 

exceeded. The upper bound can be 
calculated.
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The 0/1 knapsack problem

 E.g. n = 6, M = 34

 A feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0,

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi  Pi+1/Wi+1)
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How to find the lower bound?

 Ans: by relaxing our restriction from Xi = 0 or 1 to 
0  Xi  1 (knapsack problem)

Let 


P Xi i
i

n

1

 be an optimal solution for 0/1 

knapsack problem and  


P Xi
i

n

i
1

 be an optimal 

solution for fractional knapsack problem. Let 

Y=


P Xi i
i

n

1

, Y’ =   


P Xi
i

n

i
1

. 

 Y’  Y 
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The knapsack problem

 We can use the greedy method to find an optimal solution 
for knapsack problem.

 For example, for the state of X1=1 and X2=1, we have

X1 = 1, X2 =1, X3 = (34-6-10)/8=5/8, X4 = 0, X5 = 0, X6 =0
-(P1+P2+5/8P3) = -18.5 (lower bound)
-18 is our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)
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How to expand the tree?

 By the best-first search scheme

 That is, by expanding the node with the 
best lower bound. If two nodes have 
the same lower bounds, expand the 
node with the lower upper bound.



340/1 Knapsack Problem Solved by Branch-and-Bound Strategy
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 Node 2 is terminated because its lower 
bound is equal to the upper bound of 
node 14.

 Nodes 16, 18 and others are terminated 
because the local lower bound is equal 
to the local upper bound. 
(lower bound  optimal solution  upper 
bound)
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The A* algorithm

 Used to solve optimization problems.

 Using the best-first strategy.

 If a feasible solution (goal node) is selected to expand, then
it is optimal and we can stop.

 Estimated cost function of a node n : f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): “real” cost from node n to a goal node.

f*(n): “real” cost of node n

h(n)  h*(n)

 f(n) = g(n) + h(n)  g(n)+h*(n) = f*(n) …………. (1)

Estimated further cost should never 
exceed the real further cost.
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Reasoning
 Let t be the selected goal node. We have 

f*(t)=f(t)+h(t)=f(t)+0=f(t)…..(2)

 Assume that t is not the optimal node. There must 
exist one node, say s, that has been generated but 
not selected and that will lead to the optimal node.

 Since we take the best first search strategy, we have 
f (t)f(s)……(3).

 We have f*(t)=f(t)f(s)f*(s) by Eqs. (1), (2) and 
(3), which means that s is not the node leading to 
the optimal node. Contradiction occurs.

 Therefore, t is the optimal node.
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The A* algorithm

 Stop when the selected node is also a goal node. It is
optimal iff h(n)h*(n)

 E.g.: To find a shortest path from node s to node t
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The A* algorithm

 Step 1.

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4 

g(B)=4 h(B)=min{2}=2 f(B)=4+2=6 

g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5 
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The A* algorithm

 Step 2. Expand A

g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5 

g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7 
 



41

The A* algorithm

 Step 3. Expand C

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6 

g(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10 
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The A* algorithm
 Step 4. Expand D

g(H)=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10 

g(I)=2+2+3=7 h(I)=0 f(I)=7+0=7 
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The A* algorithm
 Step 5. Expand B

g(J)=4+2=6 h(J)=min{5}=5 f(J)=6+5=11 
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The A* algorithm

 Step 6. Expand F

g(K)=3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11 

g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8 
 

I is selected to expand.
The A* algorithm stops,
since I is a goal node.
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The A* Algorithm

 Can be considered as a special type of 
branch-and-bound algorithm.

 When the first feasible solution is found, 
all nodes in the heap (priority queue) 
are terminated.

 * stands for “real”

 “A* algorithm” stands for 
“real good algorithm”



Q&A
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