Branch and Bound Searching Strategies

Feasible Solution vs.
 Optimal Solution

- DFS, BFS, hill climbing and best-first search can be used to solve some searching problem for searching a feasible solution.
- However, they cannot be used to solve the optimization problems for searching an (the) optimal solution.

The branch-and-bound strategy

- This strategy can be used to solve optimization problems without an exhaustive search in the average case.

Branch-and-bound strategy

- 2 mechanisms:
- A mechanism to generate branches when searching the solution space
- A mechanism to generate a bound so that many braches can be terminated

Branch-and-bound strategy

- It is efficient in the average case because many branches can be terminated very early.
- Although it is usually very efficient, a very large tree may be generated in the worst case.
- Many NP-hard problem can be solved by B\&B efficiently in the average case; however, the worst case time complexity is still exponential.

A Multi-Stage Graph Searching Problem.

Find the shortest path from V_{0} to V_{3}

E.G.:A Multi-Stage Graph Searching Problem

Solved by branch-and-bound (hill-climbing with bounds)

feasible solution
(upper bound)

A feasible solution is found whose cost is equal to 5 . An upper bound of the optimal solution is first found here.

For Minimization Problems

Upper Bound
(for feasible solutions)

- Usually, LB<UB.
- If $\mathrm{LB} \geq \mathrm{UB}$, the expanding node can be terminated. Optimal

For Maximization Problems

Usually, LB<UB.

- If $L B \geq U B$, the expanding node can be terminated.

 Lower Bound
 (for feasible solutions)

The traveling salesperson optimization problem

- Given a graph, the TSP Optimization problem is to find a tour, starting from any vertex, visiting every other vertex and returning to the starting vertex, with minimal cost.
- It is NP-hard.
- We try to avoid n ! exhaustive search by the branch-and-bound technique on the average case. (Recall that $\mathrm{O}(\mathrm{n}!)>0\left(2^{n}\right)$.)

The traveling salesperson optimization problem

- E.g. A Cost Matrix for a Traveling Salesperson Problem.

j	1	2	3	4	5	6	7
1	∞	3	93	13	33	9	57
2	4	∞	77	42	21	16	34
3	45	17	∞	36	16	28	25
4	39	90	80	∞	56	7	91
5	28	46	88	33	∞	25	57
6	3	88	18	46	92	∞	7
7	44	26	33	27	84	39	∞

The basic idea

- There is a way to split the solution space (branch)
- There is a way to predict a lower bound for a class of solutions. There is also a way to find a upper bound of an optimal solution. If the lower bound of a solution exceeds the upper bound, this solution cannot be optimal and thus we should terminate the branching associated with this solution.

Splitting

- We split a solution into two groups:
- One group including a particular arc
- The other excluding the arc
- Each splitting incurs a lower bound and we shall traverse the searching tree with the "lower" lower bound.

The traveling salesperson optimization problem

- The Cost Matrix for a Traveling Salesperson Problem.

Step 1 to reduce: Search each row for the smallest value

		1	2	3	4	5	6	7	to
	1	∞	3	93	13	33	9	57	
	2	4	∞	77	42	21	16	34	
	3	45	17	∞	36	16	28	25	
from i	4	39	90	80	∞	56	7	91	
	5	28	46	88	33	∞	25	57	
	6	3	88	18	46	92	∞	7	
	7	44	26	33	27	84	39	∞	

Step 2 to reduce: Search each column for the smallest value The traveling salesperson
optimization problem

- Reduced cost matrix:

j	1	2	3	4	5	6	7	
1	∞	0	90	10	30	6	54	(-3)
2	0	∞	73	38	17	12	30	(-4)
3	29	1	∞	20	0	12	9	(-16)
4	32	83	73	∞	49	0	84	(-7)
5	3	21	63	8	∞	0	32	(-25)
6	0	85	15	43	89	∞	4	(-3)
7	18	0	7	1	58	13	∞	(-26)
							reduced:84	

A Reduced Cost Matrix.

The traveling salesperson optimization problem

i^{j}	1	2	3	4	5	6	7
1	∞	0	83	9	30	6	50
2	0	∞	66	37	17	12	26
3	29	1	∞	19	0	12	5
4	32	83	66	∞	49	0	80
5	3	21	56	7	∞	0	28
6	0	85	8	42	89	∞	0
7	18	0	0	0	58	13	∞

Table 6-5 Another Reduced Cost Matrix.

Lower bound

- The total cost of $84+12=96$ is subtracted. Thus, we know the lower bound of feasible solutions to this TSP problem is 96 .

The traveling salesperson optimization problem

- Total cost reduced: $84+7+1+4=96$ (lower bound) decision tree:

The Highest Level of a Decision Tree.

- If we use arc 3-5 to split, the difference on the lower bounds is $17+1=18$.

Heuristic to select an arc to split the solution space

- If an arc of cost $0(x)$ is selected, then the lower bound is added by 0 (x) when the arc is included.
- If an arc <i,j> is not included, then the cost of the second smallest value (y) in row i and the second smallest value (z) in column j is added to the lower bound.
- Select the arc with the largest $(y+z)-x_{0}$

We only have to set c4-6 to be ∞.

For the right subtree (Arc 4-6 is excluded)

i^{j}	1	2	3	4	5	6	7
1	∞	0	83	9	30	6	50
2	0	∞	66	37	17	12	26
3	29	1	∞	19	0	12	5
4	32	83	66	∞	49	∞	80
5	3	21	56	7	∞	0	28
6	0	85	8	42	89	∞	0
7	18	0	0	0	58	13	∞

For the left subtree (Arc 4-6 is included)

j	1	2	3	4	5	7
1	∞	0	83	9	30	50
2	0	∞	66	37	17	26
3	29	1	∞	19	0	5
5	3	21	56	7	∞	28
6	0	85	8	∞	89	0
7	18	0	0	0	58	∞

A Reduced Cost Matrix if Arc 4-6 is included.

1. $4^{\text {th }}$ row is deleted.
2. $6^{\text {th }}$ column is deleted.
3. We must set c6-4 to be ∞. (The reason will be clear later.)

For the left subtree

- The cost matrix for all solution with arc 4-6:

j	1	2	3	4	5	7
i						
1	∞	0	83	9	30	50
2	0	∞	66	37	17	26
3	29	1	∞	19	0	5
5	0	18	53	4	∞	25
6	0	85	8	∞	89	0
7	18	0	0	0	58	∞
A Reduced Cost Matrix for that in Table 6-6.						

- Total cost reduced: 96+3 = 99 (new lower bound)

Upper bound

- We follow the best-first search scheme and can obtain a feasible solution with cost C .
- C serves as an upper bound of the optimal solution and many branches may be terminated if their lower bounds are equal to or larger than C.

Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson Problem.

Preventing an arc

- In general, if paths $i_{1}-i_{2}-\ldots-i_{m}$ and $j_{1}-j_{2}-\ldots-j_{n}$ have already been included and a path from i_{m} to j_{1} is to be added, then path from j_{n} to i_{1} must be prevented (by assigning the cost of j_{n} to i_{1} to be ∞)
- For example, if 4-6, 2-1 are included and 1-4 is to be added, we must prevent 6-2 from being used by setting $c 6-2=\infty$. If $6-2$ is used, there will be a loop which is forbidden.

The 0/1 knapsack problem

- Positive integer $P_{1}, P_{2}, \ldots, P_{n}$ (profit) $W_{1}, W_{2}, \ldots, W_{n}$ (weight) M (capacity)
$\operatorname{maximize} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
subject to $\sum_{i=1}^{n} W_{i} X_{i} \leq M \quad X_{i}=0$ or $1, i=1, \ldots, n$.
The problem is modified:
$\operatorname{minimize}-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$

The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound Strategy to Solve 0/1 Knapsack Problem.

How to find the upper bound?

- Ans: by quickly finding a feasible solution in a greedy manner: starting from the smallest available i, scanning towards the largest i 's until M is exceeded. The upper bound can be calculated.

The 0/1 knapsack problem

- E.g. $\mathrm{n}=6, \mathrm{M}=34$

i	1	2	3	4	5	6
P_{i}	6	10	4	5	6	4
$\mathrm{~W}_{\mathrm{i}}$	10	19	8	10	12	8
		$\left(\mathrm{P}_{\mathrm{i}} / \mathrm{W}_{\mathrm{i}} \geq \mathrm{P}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}+1}\right)$				

- A feasible solution: $X_{1}=1, X_{2}=1, X_{3}=0, X_{4}=0$,
$X_{5}=0, X_{6}=0$
$-\left(P_{1}+P_{2}\right)=-16$ (upper bound)
Any solution higher than -16 can not be an optimal solution.

How to find the lower bound?

- Ans: by relaxing our restriction from $X_{i}=0$ or 1 to $0 \leq X_{i} \leq 1$ (knapsack problem)
Let $-\sum_{i=1}^{n} P_{i} X_{i}$ be an optimal solution for $0 / 1$
knapsack problem and $-\sum_{i=1}^{n} P_{i} X_{i}^{\prime}$ be an optimal solution for fractional knapsack problem. Let

$$
\begin{aligned}
& \mathrm{Y}=-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \mathrm{Y}^{\prime}=-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{\prime} . \\
& \Rightarrow \mathrm{Y}^{\prime} \leq \mathrm{Y}
\end{aligned}
$$

The knapsack problem

- We can use the greedy method to find an optimal solution for knapsack problem.
- For example, for the state of $X_{1}=1$ and $X_{2}=1$, we have $X_{1}=1, X_{2}=1, X_{3}=(34-6-10) / 8=5 / 8, X_{4}=0, X_{5}=0, X_{6}=0$
$-\left(P_{1}+P_{2}+5 / 8 P_{3}\right)=-18.5$ (lower bound)
-18 is our lower bound. (We only consider integers, since the benefits of a $0 / 1$ knapsack problem will be integers.)

How to expand the tree?

- By the best-first search scheme
- That is, by expanding the node with the best lower bound. If two nodes have the same lower bounds, expand the node with the lower upper bound.

0/1 Knapsack Problem Solved by Branch-and-Bound Strategy 34

- Node 2 is terminated because its lower bound is equal to the upper bound of node 14.
- Nodes 16, 18 and others are terminated because the local lower bound is equal to the local upper bound. (lower bound \leq optimal solution \leq upper bound)

The A* algorithm

- Used to solve optimization problems.
- Using the best-first strategy.
- If a feasible solution (goal node) is selected to expand, then it is optimal and we can stop.
- Estimated cost function of a node $n: f(n)$
$f(n)=g(n)+h(n)$
$g(n)$: cost from root to node n.
$h(n)$: estimated cost from node n to a goal node.
$h^{*}(n)$: "real" cost from node n to a goal node.
$f^{*}(n)$: "real" cost of node n Estimated further cost should never
$h(n) \leq h *(n)$
$\Rightarrow f(n)=g(n)+h(n) \leq g(n)+h^{*}(n)=f^{*}(n)$

Reasoning

- Let t be the selected goal node. We have $\mathrm{f}^{*}(\mathrm{t})=\mathrm{f}(\mathrm{t})+\mathrm{h}(\mathrm{t})=\mathrm{f}(\mathrm{t})+0=\mathrm{f}(\mathrm{t}) \ldots .$. (2)
- Assume that t is not the optimal node. There must exist one node, say s, that has been generated but not selected and that will lead to the optimal node.
- Since we take the best first search strategy, we have $f(t) \leq f(s) \ldots . .(3)$.
- We have $f^{*}(t)=f(t) \leq f(s) \leq f *(s)$ by Eqs. (1), (2) and (3), which means that s is not the node leading to the optimal node. Contradiction occurs.
- Therefore, t is the optimal node.

The A^{*} algorithm

Stop when the selected node is also a goal node. It is optimal iff $h(n) \leq h^{*}(n)$

- E.g.: To find a shortest path from node s to node t

The A* * algorithm

- Step 1.

$g(A)=2$
$g(B)=4$
$g(C)=3$
$h(A)=\min \{2,3\}=2$
$h(B)=\min \{2\}=2$
$h(C)=\min \{2,2\}=2$
$\mathrm{f}(\mathrm{A})=2+2=4$
$\mathrm{f}(\mathrm{B})=4+2=6$
$f(C)=3+2=5$

The A* * algorithm

- Step 2. Expand A

The A^{*} algorithm

- Step 3. Expand C

$$
\begin{array}{lll}
g(F)=3+2=5 & h(F)=\min \{3,1\}=1 & f(F)=5+1=6 \\
g(G)=3+2=5 & h(G)=\min \{5\}=5 & f(G)=5+5=10
\end{array}
$$

The A* * algorithm

- Step 4. Expand D

$$
\begin{array}{ll}
g(H)=2+2+1=5 & h(H)=\min \{5\}=5 \\
g(I)=2+2+3=7 & h(I)=0
\end{array}
$$

$f(H)=5+5=10$ $\mathrm{f}(\mathrm{I})=7+0=7$

The A^{*} algorithm

- Step 5. Expand B

The A^{*} algorithm

- Step 6. Expand F

I is selected to expand. The A* algorithm stops, since I is a goal node.

$$
g(K)=3+2+1=6
$$

$\mathrm{f}(\mathrm{K})=6+5=11$

$$
g(L)=3+2+3=8 \quad h(L)=0
$$

$\mathrm{f}(\mathrm{L})=8+\mathrm{O}_{44}=8$

The A* Algorithm

- Can be considered as a special type of branch-and-bound algorithm.
- When the first feasible solution is found, all nodes in the heap (priority queue) are terminated.
- * stands for "real"
- "A* algorithm" stands for "real good algorithm"

