

JAVA

Programming

Unit-1

Mr Sana Swaroop

Asst Professor

Java Programming(R16) Unit-I

1.0 Introduction to Object Oriented Programming

The 1960s gave birth to structured programming. This is the method of programming

championed by languages such as C. With the advent of languages such as c, structured

programming became very popular and was the main technique of the 1980‟s. Structured

programming was a powerful tool that enabled programmers to write moderately complex

programs fairly easily. However, as the programs grew larger, even the structured approach

failed to show the desired result in terms of bug-free, easy-to- maintain, and reusable programs.

To solve these problems, a new way to program was invented, called object-oriented

programming (OOP).

Object Oriented Programming (OOP) is an approach to program organization and

development that attempts to eliminate some of the pitfalls of conventional programming

methods by incorporating the best of structured programming features with several powerful new

concepts. It is a new way of organizing and developing programs and has nothing to do with any

particular language. However, not all languages are suitable to implement the OOP concepts

easily.

1.1 PO Programming Vs OO Programming
All computer programs consist of two elements: code and data. Furthermore, a program

can be conceptually organized around its code or around its data. That is, some programs are

written around ― “what is happening” and others are written around ―“who is being affected”.

These are the two paradigms that govern how a program is constructed. The first way is called

the process- oriented model or procedural language. This approach characterizes a program as a

series of linear steps (i.e. code). The process-oriented model can be thought of as code acting on

data. Procedural languages such as C employ this model to considerable success.

To manage increasing complexity, the second approach, called object-oriented

programming, was designed. Object-oriented programming organizes a program around its data

(i.e. objects) and a set of well-defined interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

Difference between POP and OOP
 Procedure Oriented Programming Object Oriented Programming

Divided Into

Program is divided into small parts Program is divided into parts

 called functions. called objects.

Importance is given to functions as

Importance is given to the data rather

Importance than procedures or functions because it

 well as sequence of actions to be done.

works as a real world.

 Approach It follows Top-down approach. It follows Bottom-up approach.

 Data Data can move freely from function to Objects can communicate with each

 Moving function in the system. other through member functions.

Expansion

To add new data and function in POP It provides an easy way to add new data

is not so easy. and function.

 1

Java Programming (R16) Unit-I

 Most function uses Global data

for sharing that can be accessed

freely from function to function

in the system.

Data cannot move easily from function

to function, it can be kept public or

private so we can control the access of

data.

Data Access

Data Hiding

It does not have any proper way
for hiding data so it is less
secure.

It supports data hiding so provides

more security.

Overloading In POP, Overloading is not

possible.

In OOP, overloading is possible in the
form of Function Overloading and

Operator Overloading.

Inheritance

No such concept of inheritance
in POP

Inheritance is allowed in OOP

 Access

Specifiers

It does not have any access

specifiers.
It has access specifiers named Public,
Private, Protected.

Examples

C, BASIC, FORTRAN, Pascal, C++, JAVA, C#, Smalltalk, Action

COBOL. Script.

1.2 Principles of OOP

It is necessary to understand some of the concepts used extensively in object-oriented
programming. These include:

 Object Inheritance

 Class Polymorphism

 Encapsulation Dynamic binding

 Data abstraction Message passing

Object
Object is the basic run time entity in an object-oriented system. It may represent a person,

a place, a bank account, a table of data, vectors, time and lists. Objects have states and behaviors.
Example: A dog has states - color, name, breed as well as behaviors – wagging the tail, barking,

eating. An object is an instance of a class.

In OOP, A problem is analyzed in term of objects and the nature of communication

between them. Objects should be chosen such that they match closely with the real-world
objects. Objects take up space in the memory and have an associated address like a structure in

C. When a program is executed, the objects interact by sending messages to one another.

For example, if “customer” and “account” are to object in a program, then the customer

object may send a message to the account object requesting for the bank balance. Each object
contain data, and code to manipulate data. Below figure shows two notations that are popularly

used in object oriented analysis and design.

 2

Java Programming (R16) Unit-I

Class

A class is a collection of similar objects that share the same properties, methods, relationships

and semantics. A class can be defined as a template/blueprint that describes the behavior/state of

the object.

Encapsulation
Definition: The process binding (or wrapping) code and data together into a single unit is known

as Encapsulation. For example: capsule, it is wrapped with different medicines.

 Java supports the feature of Encapsulation using classes.
 The data in the class is not accessed by outside world.

 The functions that are defined along with the data within the same class are allowed to

access the data.

 These functions provide the interface between the object‟s data and the program. This

insulation of the data from direct access by the program is called data hiding or

information hiding.

 A class defines the structure and behavior (data and code) that will be shared by a set of

objects. Each object of a given class contains the same structure and behavior defined by

the class.

 The objects are referred to as instances of a class. Thus, a class is a logical construct; an

object is physical reality.

Data abstraction

Definition: It a process of providing essential features without providing the background or

implementation details. For example: It is not important for the user how TV is working
internally, and different components are interconnected. The essential features required to the

user are how to start, how to control volume, and change channels.

In java, we use abstract class and interface to achieve abstraction.

Inheritance

It a process by which an object of one class acquires the properties and methods of

another class. It supports the concept of hierarchical classification. For example, the bird,

„robin‟ is a part of class „flying bird‟ which is again a part of the class „bird‟. The principal

behind this sort of division is that each derived class shares common characteristics with the

class from which it is derived as illustrated in below figure.

In OOP, the concept of inheritance provides the idea of reusability. This means that we

can add additional features to an existing class without modifying it. This is possible by deriving

a new class from the existing one. The new class will have the combined feature of both the

classes. The Class from which the properties are acquired is called super class, and the class that

 3

Java Programming (R16) Unit-I

acquires the properties is called subclass. This is mainly used for Method Overloading and Code

reusability.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means

the ability to take more than one form. An operation may exhibit different behavior is different

instances. The behavior depends upon the types of data used in the operation.

In Java, we use method overloading and method overriding to achieve polymorphism.

For example can be to speak something e.g. cat speaks meow, dog barks woof , duck speaks

quack, etc.

Advantages of OOP

OOP offers several benefits to both the program designer and the user. Object-Orientation

contributes to the solution of many problems associated with the development and quality of

 4

Java Programming (R16) Unit-I

software products. The new technology promises greater programmer productivity, better quality

of software and lesser maintenance cost. The principal advantages are:

 It presents a simple, clear and easy to maintain structure.
 Software complexity can be easily managed.
 It enhances program modularity since each object exists independently.
 New features can be easily added without disturbing the existing one.
 Objects can be reused in other program.
 It allows designing and developing safe programs using the data hiding.
 Through inheritance, we can eliminate redundant code extend the use of existing classes.
 It is easy to partition the work in a project based on objects.
 Object-oriented system can be easily upgraded from small to large system.

 Message passing techniques for communication between objects makes to interface

descriptions with external systems much simpler.

Applications of OOP

Applications of OOP are beginning to gain importance in many areas. The most popular

application of object-oriented programming, up to now, has been in the area of user interface

design such as window. Hundreds of windowing systems have been developed, using the OOP

techniques. The promising areas of application of OOP include:

 Real-time systems
 Simulation and modeling
 Object-oriented data bases
 Hypertext, Hypermedia, and Expertext
 AI and expert systems
 Neural networks and Parallel programming
 Decision support and Office automation systems
 CAM/CAD Systems

1.3 What is Java?

Java is a programming language and a platform. Java is a high level, robust, secured and

object-oriented programming language.

Platform: Any hardware or software environment in which a program runs, is known as a platform.

Since Java has its own runtime environment (JRE) and API, it is called platform.

Where it is used (Applications)?

According to Sun, 3 billion devices run java. There are many devices where Java is currently used.

Some of them are as follows:

1. Desktop GUI Applications such as acrobat reader, media player, antivirus etc.
2. Web Applications such as irctc.co.in, javabay.com etc.
3. Enterprise Applications such as banking applications.

 5

Java Programming (R16) Unit-I
4. Mobile Applications
5. Embedded Systems
6. Smart Cards
7. Robotics
8. Games etc.

Types of Java Applications
There are mainly 4 types of applications that can be created using java programming:

1. Standalone Application
It is also known as desktop application or window-based application. An application that

we need to install on every machine such as media player, antivirus etc. AWT and Swing

are used in java for creating standalone applications.
2. Web Application

An application that runs on the server side and creates dynamic page, is called web

application. Currently, servlet, jsp, struts, jsf etc. technologies are used for creating web

applications in java.
3. Enterprise Application

An application that is distributed in nature such as banking applications etc. It has the

advantage of high level security, load balancing and clustering. In java, EJB is used for

creating enterprise applications.
4. Mobile Application

An application that is created for mobile devices. Currently Android and Java ME are

used for creating mobile applications.

Java Platforms / Editions
There are 4 platforms or editions of Java:

1. Java SE (Java Standard Edition)
It is a java programming platform. It includes Java programming APIs such as java.lang,

java.io, java.net, java.util, java.sql, java.math etc. It includes core topics like OOPs,

String, Regex, Exception, Inner classes, Multithreading, I/O Stream, Networking, AWT,

Swing, Reflection, Collection etc.
2. Java EE (Java Enterprise Edition)

It is an enterprise platform which is mainly used to develop web and enterprise

applications. It is built on the top of Java SE platform. It includes topics like Servlet, JSP,

Web Services, EJB, JPA etc.
3. Java ME (Java Micro Edition)

It is a micro platform which is mainly used to develop mobile applications.
4. JavaFx

It is used to develop rich internet applications. It uses light-weight user interface API.

History of Java

The history of java starts from Green Team. Java team members (also known as Green

Team), initiated a revolutionary task to develop a language for digital devices such as set-top

boxes, televisions etc.

 6

Java Programming (R16) Unit-I

For the green team members, it was an advance concept at that time. But, it was suited for

internet programming. Later, Java technology as incorporated by Netscape.

James Gosling

Currently, Java is used in internet programming, mobile devices, games, e-business solutions etc.

There are given the major points that describe the history of java.

1. James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language

project in June 1991 at Sun Microsystems. The small team of sun engineers called Green

Team.
2. Originally designed for small, embedded systems in electronic appliances like set-

top boxes.
3. Firstly, it was called "Greentalk" by James Gosling and file extension was “.gt”.
4. After that, it was called Oak and was developed as a part of the Green project.
5. Why Oak? Oak is a symbol of strength and chosen as a national tree of many

countries like U.S.A., France, Germany, Romania etc.
6. In 1995, Oak was renamed as "Java" because it was already a trademark by Oak

Technologies.

Why "Java" name

7. Why had they chosen Java name for java language? The team gathered to choose a new

name. The suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA" etc.

They wanted something that reflected the essence of the technology: revolutionary,

dynamic, lively, cool, unique, and easy to spell and fun to say.

According to James Gosling "Java was one of the top choices along with Silk".

Since java was so unique, most of the team members preferred Java.
8. Java is an island of Indonesia where first coffee was produced (called java coffee).
9. Notice that Java is just a name not an acronym.
10. Originally developed by James Gosling at Sun Microsystems (which is now a

subsidiary of Oracle Corporation) and released in 1995.
11. In 1995, Time magazine called Java one of the Ten Best Products of 1995.
12. JDK 1.0 released in(January 23, 1996).

Java Version History
There are many java versions that have been released. Current stable release of Java is Java SE 8.

1. JDK Alpha and Beta (1995)
2. Initial Java Versions 1.0 and 1.1 were released in the year 1996 for Linux, Solaris, Mac

and Windows.

 7

http://en.wikipedia.org/wiki/James_Gosling

Java Programming (R16) Unit-I

3. J2SE 1.2 (Commonly called as Java 2) was released in the year 1998.
4. J2SE 1.3 codename Kestrel was released in the year 2000.
5. J2SE 1.4 codename Merlin was released in the year 2002.
6. J2SE 5.0 codename „Tiger‟ was released in the year 2004.
7. Java SE 6 codename „Mustang‟ was released in the year 2006.
8. Java SE 7 codename „Dolphin‟ was released in the year 2011.
9. Java SE 8 is the current stable release which was released this year 2014.

Five Goals which were taken into consideration while developing Java
1. Keep it simple, familiar and object oriented.
2. Keep it Robust and Secure.
3. Keep it architecture-neural and portable.
4. Executable with High Performance.
5. Interpreted, threaded and dynamic.

Why we call it Java 2, Java 5, Java 6, Java 7 and Java 8, not their actual version numbers

which 1.2, 1.5, 1.6, 1.7 and 1.8?

Java 1.0 and 1.1 were Java. When Java 1.2 was released it had a lots of changes and marketers /

developers wanted a new name so they called it Java 2 (J2SE), remove the numeric before

decimal. This was not the condition when Java 1.3 and Java 1.4 were released hence they were

never called Java 3 and Java 4, but they were still Java 2.

When Java 5 was released, once again it was having a lots of changes for the developer /

marketers and need a new name. The next number in sequence was 3, but calling Java 1.5 as

Java 3 was confusing hence a decision was made to keep the naming as per version number and

till now the legacy continues.

1.4 Java Features / Buzz words

There is given many features of java. They are also known as java buzzwords. The Java Features

given below are simple and easy to understand.

1. Simple
2. Secure
3. Portable
4. Object-oriented
5. Robust
6. Multithreaded
7. Architecture-neutral
8. Interpreted
9. High performance
10. Distributed
11. Dynamic

 8

Java Programming (R16) Unit-I

Simple

Java inherits all the best features from the programming languages like C, C++ and thus

makes it really easy for any developer to learn with little programming experience. Removed

many confusing and/or rarely-used features e.g., explicit pointers, operator overloading etc.

No need to remove unreferenced objects because there is Automatic Garbage Collection in

java.

Secure

When Java programs are executed they don‟t instruct commands to the machine directly.

Instead Java Virtual machine reads the program (Byte code) and convert it into the machine

instructions. This way any program tries to get illegal access to the system will not be

allowed by the JVM. Allowing Java programs to be executed by the JVM makes Java

program fully secured under the control of the JVM.

Portable

Java programs are portable because of its ability to run the program on any platform and no

dependency on the underlying hardware / operating system.

Object Oriented

Everything in Java is an Object. The object model in Java is simple and easy to extend, while

primitive types, such as integers, are kept as high-performance non-objects.

Robust

The multi-platformed environment of the Web places extraordinary demands on a program,

because the program must execute reliably in a variety of systems. Thus, the ability to create

robust programs was given a high priority in the design of Java. Following features of Java

make it Robust.

 Platform Independent

 Object Oriented Programming Language

 9

Java Programming (R16) Unit-I

 Memory management
 Exception Handling

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you

to write programs that do many things simultaneously.

Architecture-neutral

The Java designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation. Their goal was ― write once; run anywhere,

anytime, forever. To a great extent, this goal was accomplished.

Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java byte code. This code can be executed on any system that

implements the Java Virtual Machine. Most previous attempts at cross-platform solutions

have done so at the expense of performance. As explained earlier, the Java byte code was

carefully designed so that it would be easy to translate directly into native machine code for

very high performance by using a just-in-time compiler.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing a

file. Java also supports Remote Method Invocation (RMI). This feature enables a program to

invoke methods across a network.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used

to verify and resolve accesses to objects at run time. This makes it possible to dynamically

link code in a safe and expedient manner.

1.5 Java Virtual Machine (JVM)

The key that allows Java to solve both the security and the portability problems is the byte

code. The output of Java Compiler is not directly executable file. Rather, it contains highly

optimized set of instructions. This set of instructions is called, "byte code". This byte code is

designed to be executed by Java Virtual Machine (JVM). The JVM also called as the

interpreter for byte code.

JVM also helps to solve many problems associated with web-based programs.

Translating a Java program into byte code makes it much easier to run a program in a wide

variety of environments because only the JVM needs to be implemented for each platform.

Once the run-time package exists for a given Figure 2 JVM system, any Java program can

run on it. Remember, although the details of the JVM will differ from platform to

 10

Java Programming (R16) Unit-I

platform, all understand the same Java byte code. Thus, the execution of byte code by the

JVM is the easiest way to create truly portable programs.

Internal Architecture of JVM

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides

runtime environment in which java bytecode can be executed.

 JVMs are available for many hardware and software platforms (i.e. JVM is

platform dependent).

 It is a specification where working of Java Virtual Machine is specified. But

implementation provider is independent to choose the algorithm. Its implementation

has been provided by Sun and other companies.
 Its implementation is known as JRE (Java Runtime Environment).

 Whenever you write java command on the command prompt to run the java class, an

instance of JVM is created.

What it does
The JVM performs following operations:

 Loads code

 Verifies code

 Executes code

 Provides runtime environment

JVM provides definitions for the:

 Memory area

 Class file format

 Register set

 Garbage-collected heap

 Fatal error reporting etc.

 11

Java Programming (R16) Unit-I

Let's understand the internal architecture of JVM. It contains class loader, memory

area, execution engine etc.

1. Classloader
Classloader is a subsystem of JVM that is used to load class files.

2. Class(Method) Area
Class (Method) Area stores per-class structures such as the runtime constant

pool, field and method data, the code for methods.

Fig. Internal architecture of JVM

3. Heap
It is the runtime data area in which objects are allocated.

4. Stack
Java Stack stores frames. It holds local variables and partial results, and plays a part in

method invocation and return. Each thread has a private JVM stack, created at the

same time as thread. A new frame is created each time a method is invoked. A frame

is destroyed when its method invocation completes.

5. Program Counter (PC) Register
PC (program counter) register. It contains the address of the Java virtual

machine instruction currently being executed.

6. Native Method Stack
It contains all the native methods used in the application. A native method is a

Java method (either an instance method or a class method) whose implementation

is written in another programming language such as C.

7. Execution Engine

It contains:

a. A virtual processor

 12

Java Programming (R16) Unit-I

b. Interpreter: Read bytecode stream then execute the instructions.
c. Just-In-Time(JIT) compiler: It is used to improve the performance. JIT

compiles parts of the byte code that have similar functionality at the same

time, and hence reduces the amount of time needed for compilation.

1.6 Basic Structure of Java Program
Basically, a Java program involves the following sections:

 Documentation Section
 Package Statement
 Import Statements
 Interface Statement
 Class Definition
 Main Method Class
 Main Method Definition

Section Description

 It comprises of a comment line which gives the names program, the

 programmer‟s name and some other brief details. Java provides 3 styles of

Documentation comments

Section 1. Single line (//)

 2. Multi-line(/* */)

 3. Documentation comment (/**….*/)

 The first statement allowed in Java file is the Package statement which is

Package used to declare a package name and it informs the compiler that the classes

statement defined within the program belong to this package. It is declared as:

 package package_name;

 The next is the number of import statements, which is equivalent to the

Import #include statement in C++.

statements Example:

 import java.util.Scanner;

Interface
Interfaces are like a class that includes a group of method declarations.

This is an optional section and can be used only when programmers want

statement

to implement multiple inheritances within a program.

Class
A Java program may contain multiple class definitions. Classes are the

main and important elements of any Java program. These classes are used

Definition

to plot the objects of the real world problem.

Main Method
Since every Java stand-alone program requires the main method as the

starting point of the program. This class is essentially a part of Java

Class

program. A simple Java program contains only this part of the program.

To create a simple java program, you need to create a class that contains main method. Let's

understand the requirement first.

 13

Java Programming (R16) Unit-I

Requirement for Welcome Java Example
For executing any java program, you need to

 Install the JDK if you don't have installed it, download the JDK and install it.
 Set path of the jdk/bin directory.
 Create the java program
 Compile and Run the java program

Sample Code of “Welcome” Java program

Example: Welcome.java

class Welcome
{

public static void main(String[] args)

{

System.out.println("Welcome to Java");

}
}

Output:
Welcome to Java

Entering the Program

 We can use any text editor such as "notepad' or "dos text editor".
 The source code is typed and is saved with ".java" as extension.

 The source code contains one or more class definitions. The program name will be

same as class name in which main function is written. This in not compulsory, but by

convention this is used.
 The source file is officially called as compilation unit.

 We can even uses our choice of interest name for the program. If we use a different

name than the class name, then compilation is done with program name, and running

is done with class file name. To avoid this confusion and organize the programs well,

it is suggested to put the same name for the program and class name, but not

compulsory.

Compiling the Program

To compile the program, specifying the name of the source file on the command line,

as shown below:

C:/>javac Welcome.java

The javac compiler creates the file called "Welcome.class” that contains the byte code

version of the source code. This byte code is the intermediate representation of the source

code that contains the instructions that the Java Virtual Machine (JVM) will execute. Thus

the output of the javac is not the directly executable code.

Running the Program

To run the program, we must use Java interpreter, called "java". This is interpreter the

"Welcome.class" file given as input.

C:/>java Welcome

 14

Java Programming (R16) Unit-I

When the program is run with java interpreter, the following output is produced: Welcome to

Java

Description of the program

The first line contains the keyword class and class name, which actually the basic unit for

encapsulation and is used to declare a class in java, in which data and methods are declared.

Second line contains "{" which indicates the beginning of the class.

Third line contains the public static void main(String args[])

where

 public keyword is an access modifier which represents visibility, it means it is visible

to all.

 static is a keyword, if we declare any method as static, it is known as static method.

The core advantage of static method is that there is no need to create object to

invoke the static method. The main method is executed by the JVM, so it doesn't

require to create object to invoke the main method. So it saves memory.
 void is the return type of the method, it means it doesn't return any value.
 main represents startup of the program where execution starts.
 String[] args is used to read command line argument.

Fourth line contains the "{", which is the beginning of the main function.

Fifth line contains the statement

System.out.println("Hello World");

Here "System" is the predefined class, that provides access to the system, and out is the

output stream that is used to connect to the console. The println(), is used to display string

passed to it. This can even display other information to.

1.7 Lexical issues

Java programs are a collection of whitespace, identifiers, literals, comments, operators,

separators, and keywords.

Whitespace

Java is a free-form language. This means that you do not need to follow any special

indentation rules. For example, the Java program could be written all on one line or in any

other strange way you felt like typing it, as long as there was at least one whitespace character

between each token that was not already delineated by an operator or separator. In Java,

whitespace is a space, tab, or newline.

Identifiers

Identifiers are used to name things, such as classes, variables, and methods. An identifier may

be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore

and dollar-sign characters. They must not begin with a number. Java is case-sensitive, so

VALUE is a different identifier than Value. Some examples of valid identifiers are

 15

Java Programming (R16) Unit-I

 AvgTemp count a4 $test this_is_ok

Invalid identifier names include these:

 High-temp 2count 4a Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example,

here are some literals:

100 98.6 „C‟ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the third

is a character constant, and the last is a string.

A literal can be used anywhere a value of its type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen

two: single-line and multiline. The third type is called a documentation comment. This type

of comment is used to produce an HTML file that documents your program. The

documentation comment begins with a /** and ends with a */.

Separators

In Java, there are a few characters that are used as separators. The separators are shown in

the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and

 invocation. Also used for defining precedence in expressions,

 expressions in control statements, and surrounding cast types.

{ } Braces Used to contain the values of automatically initialized arrays.
 Used to define a block of code, for classes, methods, and local

 scopes

[] Brackets Used to declare array types and to dereferencing array values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration.

. Period Used to separate package names from sub-packages and classes

 and used to separate a variable or method from a reference

 variable.

The Java Keywords

 There are 50 keywords currently defined in the Java language (see below Table).

 These keywords, combined with the syntax of the operators and separators, form

the foundation of the Java language.

 These keywords cannot be used as identifiers. Thus, they cannot be used as names for

a variable, class, or method.
 The keywords const and goto are reserved but not used.

 In addition to the keywords, Java reserves the following: true, false, and null. These

are values defined by Java.

 16

Java Programming (R16) Unit-I

 abstract continue for new switch

 assert default goto package synchronized

 boolean do if private this

 break double implements protected throw

 byte else import public throws

 case enum instanceof return transient

 catch extends int short try

 char final interface static void

 class finally long strictfp volatile

 const float native super while

Table: Java Keywords

Operators

An operator performs an operation on one or more operands. Java provides a rich set of

operators. An operator that performs an operation on one operand is called unary operator.

An operator that performs an operation on two operands is called binary operator.

1.8 Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have

a scope, which defines their visibility, and a lifetime.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable

declaration is shown here:

type identifier [= value/literal][, identifier [= value/literal] ...] ;

Here the type is any primitive data type, or class name. The identifier is the name of the

variable. We can initialize the variable by specifying the equal sign and value.

Example

int a, b, c;

int d = 3, e, f = 5;

byte z = 22;

double pi = 3.1415;
char c = 'x';

// declares three ints, a, b, and c.

// declares three more ints, initializing d and f.
// initializes z with 22.

// declares an approximation of pi.

// variable c has the value 'x'

Dynamic Initialization of the variable
We can also assign a value to the variable dynamically as follow:

int x = 12, y=13;

float z = Math.sqrt (x+y);

The Scope and Lifetime of Variables

 A scope determines what objects are visible to parts of your program. It also

determines the life time of the objects.
 Java allows, declaring a variable within any block.

 17

Java Programming (R16) Unit-I

 A block begins with opening curly brace({) and ended with end curly brace (}).
 Thus, each time we start new block, we create new scope.
 Many programming languages define two scopes: Local and Global

 As a general rule a variable defined within one scope, is not visible to code defined

outside of the scope.

 Scopes can be also nested. The variable defined in outer scope are visible to the inner

scopes, but reverse is not possible.

Example code

void method1()

{ //outer block

int a =10;

if(a==10)

{ // inner block and here a,b,c are visible to the inner scope

int b=a*20;

int c=a+30;

} //end of inner block

b=20*2; // b is not known here, which declared in inner scope

} //end of the outer block

1.9 Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may be

any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and

dollar-sign characters. They must not begin with a number, lets they be confused with a

numeric literal. Java is case-sensitive, so VALUE is a different identifier than Value. Some

examples of valid identifiers are:

Rules for Naming Identifier:

1. The first character of an identifier must be a letter, or dollar($) sign.
2. The subsequent characters can be letters, an underscore, dollar sign or digit.
3. White spaces are not allowed within identifiers.
4. Identifiers are case sensitive so VALUE is a different identifier than Value

Valid Identifiers are as follows:

Average Temperature

A1

Total_Score

Invalid Identifiers are as follows:

2a Area-circle

Not/ok

Naming Convention for Identifiers

 Class or Interface - These begin with a capital letter. The first alphabet of every

internal word is capitalized. Ex: class Myclass

 Variable or Method – These start with lower case letters. The first alphabet of every

internal word is capitalized. Ex: int totalPay;

 18

Java Programming (R16) Unit-I

 Constants - These are in upper case. Underscore is used to separate the internal word.

Ex:-final double PI=3.14;
 Package – These consist of all lower-case letters. Ex: import java.util.*;

1.10 Data Types

Java is strongly typed language

Java is strongly typed language. The safety and robustness of the Java language is in fact

provided by its strict typing. There are two reasons for this: First, every variable and

expression must be defined using any one of the type. Second, the parameters to the method

also should have some type and also verified for type compatibility.

Java language has 8 primitive data types: They are: char, byte, short, int, long, float, double,

boolean. These are again categorized into 4 groups.

1. Integer Group: The integer group contains byte, short, int, long. These data types will

need different sizes of the memory. These are assigned positive and negative values. The

width and ranges of these values are as follow:
byte

 The smallest integer type is byte.
 This is a signed 8-bit type that has a range from –128 to 127.

 Variables of type byte are especially useful when you‟re working with a stream of

data from a network or file and working with raw binary data that may not be directly

compatible with Java‟s other built-in types.
 Byte variables are declared by use of the byte keyword.

For example, the following declares two byte variables called b and c:

byte b, c; // where b and c are identifiers

short

 short is a signed 16-bit type.
 It has a range from –32,768 to 32,767.
 It is probably the least-used Java type.

Here are some examples of short variable declarations:

short s, t;

int

 The most commonly used integer type is int.
 It is a signed 32-bit type that has a range from – 2,147,483,648 to 2,147,483,647.

 In addition to other uses, variables of type int are commonly employed to control

loops and to index arrays.
 We can store byte and short values in an int.

Example: int x=12;

long

 long is a signed 64-bit type and is useful for those occasions where an int type is not

large enough to hold the desired value.
 The range of a long is -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

 19

Java Programming (R16) Unit-I

 This makes it useful when big, whole numbers are needed.

Example: long x=123456;

2. Floating-Point Group

Floating-point numbers, also known as real numbers, are used when evaluating

expressions that require fractional precision. These are used with operations such as square

root, cosine, and sine etc. There are two types of Floating-Point numbers:

1. float
2. double.

The float type represents single precision and double represents double

precision. float

 The type float specifies a single-precision value that uses 32 bits of storage.
 The range of a float is 1.4e–045 to 3.4e+038

 Single precision is faster on some processors and takes half as much space as double

precision.
 Variables of type float are useful when you need a fractional component, but don‟t

require a large degree of precision.

Example

float height, price;

double

 Double precision, as denoted by the double keyword, uses 64 bits to store a value.
 The range of a double is 4.9e–324 to 1.8e+308

 Double precision is actually faster than single precision on some modern processors

that have been optimized for high-speed mathematical calculations.

 All the math functions, such as sin(), cos(), and sqrt(), return double values.

Example:
double area, pi;

Example program to calculate the area of a circle

import java.io.*;

class Circle {

public static void main(String args[]) {

double r, area, pi;

r=2.5;

pi=3.14;

area=pi*r*r;

System.out.println("The Area of the Circle is:"+area);

}

}

Output

The Area of the Circle is: 19.625

3. Characters Group

In Java, the data type used to store characters is char. Java uses Unicode to represent

characters. Unicode defines a fully international character set that can represent all of the

characters found in all human languages.

 20

Java Programming (R16) Unit-I

Java char is a 16-bit type. The range of a char is 0 to 65,536. The standard set of characters

known as ASCII still ranges from 0 to 127 as always, and the extended 8-bit character set,

ISO-Latin-1, ranges from 0 to 255.

Here is a program that demonstrates char variables:

class CharDemo {

public static void main(String args[]) {

char ch1, ch2;

ch1 = 88;

ch2 = 'Y';

// code for X

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

Output
ch1 and ch2: X Y

4. Booleans Group

Java has a primitive type, called boolean, for logical values. It can have only one of two

possible values, true and/or false.

Here is a program that demonstrates the boolean type:

class BoolTest {

public static void main(String args[])

{

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if

statement if(b)
System.out.println("This is executed.");

else
System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

Output
b is false

b is true

This is executed.

10>9 is true

 21

Java Programming (R16) Unit-I

1.11 Literals/Constants

A literal is a value that can be passed to a variable or constant in a program. Literals can be

numeric, boolean, character, string or null.

Integer Literals

 Integers are the most commonly used type in the typical program.
 Any whole number value is an integer literal.

 Examples are 1, 2, 3, and 42. These are all decimal values, meaning they are

describing a base 10 number.
 Octal values are denoted in Java by a leading zero.

 Octal numbers are ranging from 0 to 7 range. A more common base for numbers used

by programmers is hexadecimal,

which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify

a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is

0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is

strongly typed, you might be wondering how it is possible to assign an integer literal to one

of Java‟s other integer types, such as byte or long, without causing a type mismatch error.

Fortunately, such situations are easily handled. When a literal value is assigned to a byte or

short variable, no error is generated if the literal value is within the range of the target type.

An integer literal can always be assigned to a long variable. However, to specify a long

literal, you will need to explicitly tell the compiler that the literal value is of type long. You

do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL

or 9223372036854775807L is the largest long. An integer can also be assigned to a char as

long as it is within range.

1.12 Operators

An operator is defined as a symbol that operates on operands and does something. The

something may be mathematical, relational or logical operation. Java supports a lot of

operators to be used in expressions. These operators can be categorized into the following

groups:

1. Arithmetic operators
2. Bitwise operators
3. Relational operators and
4. Logical operators
5. Miscellaneous operators

Arithmetic Operators
 These are used to perform mathematical operations.
 Most of them are binary operators since they operate on two operands at a time except

unary minus and plus.
 They can be applied to any integers, floating-point number or characters.

Java supports 5 arithmetic operators. They are +, -, *, /, %.

 The modulo (%) operator can only be applied to integer operands as well as double

operands.

 22

Java Programming (R16) Unit-I

The following table lists the arithmetic operators:

Operator Result

+ Addition (also unary plus)

- Subtraction (also unary

 minus)

* Multiplication

/ Quotient division

% Modulo Division

++ Increment

-- Decrement

+= Addition assignment

-= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

Example program to perform all the arithmetic operations (Arith.java)

import java.io.*;

class Arith

{

public static void main(String args[])

{

int a,b;

a=5;

b=6;

int c=a+b; //arithmetic addition

int d=a-b; //aritmetic subtraction

int e=a/b; //arithmetic division

int f=a*b; //arithmetic multiplication

System.out.println("The Sum is :"+c);

System.out.println("The Subtraction is :"+d);

System.out.println("The Division is :"+e);

System.out.println("The Multiplication is :"+f);

}

}

Output
The Sum is : -1

The Subtraction is : -1

The Division is : 0

The Multiplication is : 30

The Modulus Operator (%)

The modulus operator returns the remainder of a division operation. It can be applied to

integer types as well as floating-point types. The following program demonstrates the %

operator.

 23

Java Programming (R16) Unit-I

// Demonstrate the % operator.

(Modulus.java) class Modulus
{

public static void main(String args[])
{

int x = 42;

double y = 6.25;
System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 2.5 = " + y % 2.5);

}
}
Output
x mod 10 = 2
y mod 2.5 = 1.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an

assignment. As you probably know, statements like the following are quite common in

programming:

a = a + 4;

In Java, you can rewrite this statement as shown here: a += 4;

This version uses the += compound assignment operator. Both statements perform the same

action: they increase the value of a by 4.

Here is another example, a = a % 2; which can be expressed as a %= 2;

Increment and Decrement Operators

 The ++ and the – – are Java‟s increment and decrement operators.

 The increment operator is unary operator that increases value of its operand by
1. Similarly, the decrement operator decreases value of its operand by 1.

 These operators are unique in that they work only on variables not on constants.

 These are used in loops like while, do-while and for statements.

There are two ways to use increment or decrement operators in expressions. If you put the

operator in front of the operand (prefix), it returns the new value of the operand (incremented or

decremented). If you put the operator after the operand (postfix), it returns the original value of

the operand (before the increment or decrement)

For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator: x++;

 Operator Name Value returned Effect on variable

 x++ Post-increment x Incremented

 ++x Pre-increment x+1 Incremented

 x-- Post-decrement x Decremented

 --x Pre-decrement x+1 Decremented

 24

Java Programming (R16) Unit-I

The following program demonstrates the increment and decrement operator. (IncDec.java)

class IncDec

{

public static void main(String args[])

{

int x=5;

System.out.println("x="+(x++));

System.out.println("x="+(++x));

System.out.println("x="+(x--));

System.out.println("x="+(--x));

// post increment

// pre increment

// post decrement

// pre decrement

}

}

Output

x = 5
x = 7
x = 7
x = 5

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

Operator Result

~ Bitwise unary NOT (Complement)

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclsive OR assignment

>>= Shift right assigment

>>>= Shift right zero fill assigment

<<= Shift left assigment

These operators are again classified into two categories: Logical operators, and Shift

operators.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of

each operation. The bitwise operators are applied to each individual bit within each operand.

 25

Java Programming (R16) Unit-I

The Bitwise NOT (~)

One‟s complement operator (Bitwise NOT) is used to convert each 1 to 0 and 0 to 1, in the

given binary pattern. It is a unary operator i.e. it takes only one operand. For example, the

number 56, which has the following bit pattern:

~ 00111000

 56

11000111

 -57

The Bitwise AND (&)

The Bitwise AND operator produces a 1 bit if both operands are also 1. A zero is produced in

all other cases. Here is an example:

00111000

 56

& 00010100

 20

00010000

 16

The Bitwise OR(|)

The Bitwise OR operator combines bits such that if either of the bits in the operands is a 1,

then the resultant bit is a 1, as shown here:

00111000

 56

| 00010100

 20

00111100

 60

The Bitwise XOR (^)

The bitwise XOR operator combines bits such that if both operands are different then the

result is 1. Otherwise, the result is zero. The following example shows the effect of the ^.

00111000

 56

^ 00010100

 20

00101100

 44

The following program demonstrates the bitwise logical operators:

Example: (BitwiseOp.java)

class BitwiseOp

{

public static void main(String args[])

{

int x = 56,y=20,z;

int a = x&y;

int b = x|y;

int c = x^y;

 26

Java Programming (R16) Unit-I

 int d = ~x;

 System.out.println("x = " +Integer.toBinaryString(x));

 System.out.println("y = "+Integer.toBinaryString(y));

 System.out.println("x&y = "+Integer.toBinaryString(a));

 System.out.println("x|y = "+Integer.toBinaryString(b));

 System.out.println("x^y = "+Integer.toBinaryString(c));

 System.out.println("~x = "+Integer.toBinaryString(d));

 }

}

Output
x = 00111000

y = 00010100

x&y = 00010000

x|y = 00111100

x^y = 00101100

~x = 11000111

Bitwise Shift Operators

Java supports three bitwise shift operators. They are shift-left (<<) and shift-right (>>) and

unsigned shift-right(>>>). These operations are simple and are responsible for shifting bits

either to left or to the right. The syntax for shift operation can be given as:

operand operator num

where the bits in operand are shifted left or right depending on the operator (<<, >>) by the

number of places denoted by num.

The Left Shift (<<)
When we apply left-shift, every bit in x is shifted to left by one place. So, the MSB (Most

Significant Bit) of x is lost, the LSB (Least Significant Bit) of x is set to 0.

Let us consider int x=4;

Left-shift is equals to multiplication by 2.

The Right Shift(>>)

When we apply right-shift, every bit in x is shifted to right by one place. So, the LSB (Least

Significant Bit) of x is lost, the MSB (Most Significant Bit) of x is set to previous value. This

preserves the sign of the value.

Let us consider int x=4; Now shifting the bits towards right for 1 time, will give the following

result.

 27

Java Programming (R16) Unit-I

Right-shift is equals to division by 2.

The following program demonstrates the bitwise logical operators:

Example: (ShiftOp.java)
class ShiftOp

{

public static void main(String args[])

{

int x = 4;

System.out.println("x<<1 = " +x);

System.out.println("x<<1 = " +(x<<1));

System.out.println("x>>1 = "+(x>>1));

x=-4;

System.out.println("x>>>1 = "+(x>>>1));

}

}

Output
x = 4

x<<1 = 8

x>>1 = 2

x>>>1 = 2147483646

Relational Operators

A relational operator, also known as a comparison operator, is an operator that

compares two operands. The operands can be variables, constants or expressions. Relational

operators always return either true or false depending on whether the conditional relationship

between the two operands holds or not.

The outcome of these operators is a Boolean value. The relational operators are most

frequently used in the expressions to control if and loop statements.

Java has six relational operators. The following table shows these operators along with their

meanings

Operator Meaning Example

< Less than 4<5 return true

> Greater than 4>5 return false

<= Less than or equal to 100<=100 return true

>= Greater than or equal to 50>=100 return false

= =+ Equal to 4==5 return false

!= Not equal to 4!=5 return true
The following program demonstrates the Relational operators:

 28

Java Programming (R16) Unit-I

Example: (RelOp.java)
class RelOp
{

public static void main(String args[])
{

int x = 4,y=5;
System.out.println(x + "<" + y +" = " + (x<y));
System.out.println(x + ">" + y +" = " + (x>y));
System.out.println(x + "<=" + y +" = " + (x<=y));
System.out.println(x + ">=" + y +" = " + (x>=y));
System.out.println(x + "==" + y +" = " + (x==y));
System.out.println(x + "!=" + y +" = " + (x!=y));

}
}

Output
4<5 = true
4>5 = false
4<=5 = true
4>=5 = false
4==5 = false
4!=5 = true

Logical Operators (|| and &&)

Operators which are used to combine two or more relational expressions are known as

logical operators. Java supports three logical operators – logical AND(&&), logical OR(||),

logical NOT(!). These are also known as short-circuit logical operators.

 Logical && and logical || are binary operators whereas logical ! is an unary operator.
 All of these operators when applied to expressions yield either true or false.

 When we use || operator if left hand side expression is true, then the result will be

true, no matter what is the result of right hand side expression.

 In the case of && if the left hand side expression results false, then the result will be

false, no matter what is the result of right hand side expression.

Example 1: (expr1 || expr2) Example2: (expr1 && expr2)

Miscellaneous Operators

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator works in Java

much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression. The assignment

operator allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 52; // set x, y, and z to 52

 29

Java Programming (R16) Unit-I

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-

else statements. The ? has this general form:

var = expr1 ? expr2 : expr3

Here, expr1 can be any expression that evaluates to a boolean value. If expr1 is true, then

expr2 is evaluated; otherwise, expr3 is evaluated and its value is assigned to var.

The following program demonstrates the Relational operators: (Ternary.java)

class Ternary

{

public static void main(String args[])

{

int x=4,y=6;

int res= (x>y)?x:y;

System.out.println("The result is :"+res);

}

}

Output
The result is : 6

1.13 Expressions

In Java programming, an expression is any legal combination of operators and operands that

evaluated to produce a value. Every expression consists of at least one operand and can have

one or more operators. Operands are either variables or values, whereas operators are

symbols that represent particular actions.

In the expression x + 5; x and 5 are operands, and + is an operator.

In Java programming, there are mainly two types of expressions are available. They are as

follows:

1. Simple expression
2. Complex expression

Simple expression: It contains one operator and two operands or constants.

Example: x+y; 3+5; a*b; x-y etc.

Complex expression: It contains two or more operators and operands or constants.

Example: x+y-z; a+b-c*d; 2+5-3*4; x=6-4+5*2 etc.

Operators provided mainly two types of properties. They are as follows:

1. Precedence
2. Associativity

Operator Precedence

It defines the order in which operators in an expression are evaluated depends on their

relative precedence. Example: Let us see x=2+2*2

 30

Java Programming (R16) Unit-I

 1
st

 pass -- 2+2*2

 2
nd

 pass -- 2+4

 3
rd

 pass -- 6 that is x=6.

Associativity defines the order in which operators with the same order of precedence are

evaluated. Let us see x=2 / 2 * 2

1
st

 pass -- 2 / 2 * 2

2
nd

 pass -- 1*2

3
rd

 pass -- 2 that is x=2

Below Table shows the order of precedence for Java operators, from highest to

lowest. Operators in the same row are equal in precedence. In binary operations, the order of

evaluation is left to right (except for assignment, which evaluates right to left). The [], (),

and . would have the highest precedence.

 Highest(↓) Associativity

++(postfix)
--

L to R

(postfix)

++(prefix)

--
~

!

+ (unary)

(-) (type
L to R

(prefix)

unary

cast)

* / % L to R

+ - L to R

>> >>> << L to R

> >= < <= instanceof L to R

== != L to R

& L to R

^ L to R

| L to R

&& L to R

|| L to R

?: L to R

= op= R to L

 Lowest L to R

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often

necessary to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression

can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you will

need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes be

used to help clarify the meaning of an expression.

 31

Java Programming (R16) Unit-I

1.14 Type Conversion and casting

Type casting is a way to convert a variable from one data type to another data type. It can be

of two types: They are

1. Implicit Conversion
2. Explicit Conversion.

Implicit Conversion

When the type conversion is performed automatically by the compiler without programmer‟s

intervention, such type of conversion is known as implicit type conversion or automatic type

promotion. In this, all the lower data types are converted to its next higher data type.

In the case of Java, An automatic type conversion will take place if the following two

conditions are met:

 The two types are compatible.
 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int

type is always large enough to hold all valid byte values,

For widening conversions, the numeric types, including integer and floating-point types, are

compatible with each other. However, there are no automatic conversions from the numeric

types to char or boolean. Also, char and boolean are not compatible with each other.

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows:

 First, all byte, short, and char values are promoted to int, as just described.
 Then, if one operand is a long, the whole expression is promoted to long.
 If one operand is a float, the entire expression is promoted to float.
 If any of the operands is double, the result is double.

Example (TypePromo.java)
class TypePromo

{

public static void main(String args[])

{

int num=10;

float sum,f =10;

char ch='A';

sum=num+ch+f;

System.out.println("The value of sum = "+sum);

}

}

Output
The value of sum = 85.0

 32

Java Programming (R16) Unit-I

Explicit Conversion (Type casting)

It is intentionally performed by the programmer for his requirement in a Java

program. The explicit type conversion is also known as type casting. This kind of conversion
is sometimes called a narrowing conversion, since you are explicitly making the value

narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target - type) value;

Here the target type specifies the destination type to which the value has to be

converted. Example

int a=1234;

byte b=(byte) a;

The above code converts the int to byte. If the integer‟s value is larger than the range
of a byte, it will be reduced modulo (the remainder of an integer division by the) byte‟s
range.

A different type of conversion will occur when a floating-point value is assigned to an integer

type: truncation. When a floating-point value is assigned to an integer type, the fractional

component is lost. For example, if the value 1.23 is assigned to an integer, the resulting value

will simply be 1.The 0.23 will have been truncated.

1.15 Flow of Control (Control Statements)

Control statements are used to control the flow of execution to advance and branch based on

changes to the state of a program. Java control statements can be put into the three categories:

1. Selection
2. Iteration
3. Jump

Iteration statements enable program execution to repeat one or more statements (that is,

iteration statements form loops). Jump statements allow your program to execute in a

nonlinear fashion

1.15.1 Selection statements

They allow your program to choose different paths of execution based upon the outcome of

an

expression or the state of a variable. They are also called as Conditional or Decision Making

Statements. These include if and switch.

if..else statement

This is the Java's conditional branch statement. This is used to route the execution through

two different paths. The general form of if statement will be as follow:

 if (conditional expression) {

 statement1;

 }

 else {

 statement2;

 }

 33

Java Programming (R16) Unit-I

Here the statements inside the block can be single statement or composite statements. The

conditional expression is any expression that returns the Boolean value. The else clause is

optional. The if works as follows: if the conditional expression is true, then statement1 will be

executed. Otherwise statement2 will be executed. Example:

Write a java program to find whether the given number is even or odd? (EvenOdd.java)

import java.io.*;

class EvenOdd {

public static void main(String args[]) throws IOException {

DataInputStream dis =new DataInputStream(System.in);

System.out.print("Enter the value of n:");

int n=Integer.parseInt(dis.readLine());

if(n%2==0)

System.out.println(n+" is Even Number");

else

System.out.println(n+"is ODD Number");

}

}

Output
Enter the value of n: 5

5 is ODD Number

Nested if

The nested if statement is if statement, that contains another if and else inside it. When we

nest ifs, the else always associated with the nearest if. The general form of the nested if will

be as follow:

Example

if(conditional expr1) {

if(conditional expr2) {
statement1;

}
else { statement2; }

}
}
else { statement3; }

Write a java Program to test whether a given number is positive or negative. (Positive.java)

import java.io.*;

class Positive

{

public static void main(String args[]) throws IOException

{

DataInputStream dis=new DataInputStream(System.in);

System.out.print("Enter a number to test:"); int

n=Integer.parseInt(dis.readLine());

if(n>-1) {

if(n>0)

System.out.println(n+ " is Positive");

 34

Java Programming (R16) Unit-I

 }

 else

 System.out.println(n+ " is Negative");

 }

}

Output
Enter a number to test: -1

-1 is Negative

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-else-if
ladder. It looks like this:

if(condition1)

statement1;

else if(condition2)

statement2;

.

.
else if(conditionN)

statementN;

else

statement;

The if statements are executed in a sequential manner. As soon as one of the condition is true,

the statement associated with that if is executed, and the rest of the ladder is bypassed. If none

of the conditions is true, then the final else statement will be executed.

Example Program:

Write a Java Program to test whether a given character is Vowel or Consonant? (Vowel.java)

import java.io.*;

class Vowel {

public static void main(String args[]) throws IOException

{

System.out.print("Enter character to test:");

char ch=(char)System.in.read();

if(ch=='a')

System.out.println("Vowel");

else if(ch=='e')

System.out.println("Vowel");

else if(ch=='i')

System.out.println("Vowel");

else if(ch=='o')

System.out.println("Vowel");

else if(ch=='u')

 35

Java Programming (R16) Unit-I

 System.out.println("Vowel");

 else

 System.out.println("Consonant");

 }

}

Output
Enter character to test:a
Vowel
Enter character to test:r
Consonant

The Switch statement
The switch statement is Java‟s multi-way branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression. As
such, it often provides a better alternative than a large series of if-else-if statements. Here is
the general form of a switch statement:

case value1:
// statement sequence
break;

case value2:
// statement sequence
break;

case valueN:
// statement sequence
break;

default:
// default statement sequence

}

 The expression must be of type byte, short, int, char or string;

 Each of the values specified in the case statements must be of a type compatible with

the expression.
 Each case value must be a unique literal (that is, it must be a constant, not a variable).
 Duplicate case values are not allowed.

The switch statement works like this: The value of the expression is compared with each of

the literal values in the case statements. If a match is found, the code sequence following that

case statement is executed. If none of the constants matches the value of the expression, then

the default statement is executed. However, the default statement is optional. If no case

matches and no default is present, then no further action is taken.

 36

switch(expr)

{

Java Programming (R16) Unit-I

The break statement is used inside the switch to terminate a statement sequence. When a

break statement is encountered, execution branches to the first line of code that follows the

entire switch statement. This has the effect of ―jumping out of the switch.

Write a Java Program to test whether a given character is Vowel or Consonant using switch?

import java.io.*;

class SwitchTest

{

public static void main(String args[]) throws IOException

{

System.out.print("Enter achatacter to test:");

char ch=(char)System.in.read();

switch(ch)

{

//test for small letters

case 'a':

System.out.println("vowel");

break;

case 'e':

System.out.println("vowel");

break;

case 'i':

System.out.println("vowel");

break;

case 'o':

System.out.println("vowel");

break;

case 'u':

System.out.println("vowel");

break;

default:

System.out.println("Consonant");

}

}

}

Output
Enter character to test: i

Vowel

Enter character to test: x

Consonant

There are three important features of the switch statement to note:

 The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression.
 No two case constants in the same switch can have identical values.

 37

Java Programming (R16) Unit-I

 A switch statement is usually more efficient than a set of nested ifs.

1.15. 2 Loops (Iteration Statements)

Java‟s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. A loop repeatedly executes the same set of instructions until a

termination condition is met.

Advantages

 Reduce length of Code

 Take less memory space.

 Burden on the developer is reducing.

 Time consuming process to execute the program is reduced.

while

The while loop is a pre-test or entry-controlled loop. It uses conditional expression to control the
loop. The while loop evaluates (checking) the test expression before every iteration of the loop,
so it can execute zero times if the condition is initially false. The initialization of a loop control
variable is generally done before the loop separately.

while (test expression)
{

// body of loop
inc/dec statement

}

How while loop works?

 Initially the while loop evaluates (checking condition) the test expression.
 If the test expression is true , statements inside the body of while loop is

evaluated. Then, again the test expression is evaluated. The process goes on until
the test expression is false.

 When the test expression is false, the while loop is terminated.

Example : Program to print 1 to 10 numbers using while loop.

class Test {

public static void main(String[] args)
{

 int n=1;

 while(n<=10)

 {

 System.out.print(n+" ");

 n++;

 }

 }

}

Output:

1 2 3 4 5 6 7 8 9 10

do - while statement

do-while loop is similar to while loop, however there is one basic difference between them.

do-while runs at least once even if the test condition is false at first time. Syntax of do while

loop is:

 38

Java Programming (R16) Unit-I

do
{

// body of loop
inc/dec statement

} while (test expression);

How do-while loop works?

 First the code block (loop body) inside the braces ({….}) is executed once.
 Then, the test expression is evaluated (checking condition). If the test expression is

true, the loop body is executed again. This process goes on until the test expression
is evaluated to false (0).

 When the test expression is false, the do...while loop is terminated.

Example
Write a java program to add all the number from 1 to 10. (using do-while)

class Test

{

public static void main(String[] args)

{

int n=1;

do

{

System.out.print(n+" ");

n++;

} while (n<=10);

}

}

Output:

1 2 3 4 5 6 7 8 9 10

for statement

It is the most general looping construct in Java. The for loop is commonly used when the

number of iterations are exactly known. The syntax of a for loop is:

for (initialization; condition; iteration)

{

// body of loop
}

 39

Java Programming (R16) Unit-I

 an initialization,
 a test condition, and
 incrementation(++) / decrementation(˗ ˗) /update.

Initialization: This part is executed only once when we are entering into the loop first time.

This part allows us to declare and initialize any loop control variables.

Condition: if it is true, the body of the loop is executed otherwise program control goes

outside the for loop.

Iteration: After completion of initialization and condition steps loop body code is executed

and then increment or decrements steps is execute. This statement allows to us to update any

loop control variables.

How for loop works?

 First the loop initialization statement is executed.

 Then, the test expression is evaluated. If the test expression is false, for loop is

terminated. But if the test expression is true, codes inside the body of for loop is

executed and the update expression is executed. This process repeats until the test

expression becomes false.

Note: In for loop everything is optional but mandatory to place two semicolons (; ;)
Example program: same program using the for loop

class Test

{

public static void main(String[] args)

{

for(int i=1;i<=10;i++)

{

System.out.print(i+" ");

}

}

}

Output:

1 2 3 4 5 6 7 8 9 10

For each version of the for loop:

A for loop also provides another version, which is called Enhanced Version of for loop. The

general form of the for loop will be as follow:

for (type itr_var : collection)

{

// body of loop
}

 40

Java Programming (R16) Unit-I

Here, type is the type of the iterative variable of that receives the elements from collection,

one at a time, from beginning to the end. The collection is created using the array.

Example: Write a java program to print all the elements in an array?

class Test

{

public static void main(String[] args)

{

int a[] = {12,13,14,15,16};

for(int x:a)

{

System.out.print(x+" ");

}

}

}

Output
12 13 14 15 16

1.15.3 The Jump/Branching Statements

Java supports three jump statements: break, continue, and return. These statements transfer

control to another part of your program.

break statement
In Java, the break statement has three uses.

1. It terminates a statement sequence in a switch statement.
2. It can be used to exit a loop.
3. It can be used as civilized form of goto statement.

Using break to Exit a Loop

In Java, when break statement is encountered inside a loop, the loop is immediately

terminated, and program control is transferred to nest statement following the loop. The break

statement is widely used with for loop, while loop, do-while loop and switch statement. Its

syntax is quite simple, just type keyword break followed with a semicolon.

 break;

The following example illustrates the use of break;

class Test {
public static void main(String[] args) {

int i=1;

while(i <= 5)

{

if (i==3)

break;

 41

Java Programming (R16) Unit-I

System.out.print(" "+i);

i = i + 1;

}
} }
Output

1 2

Using break as a Form of Goto

For example, the goto can be useful when you are exiting from a deeply nested set of loops.

To handle such situations, Java defines an expanded form of the break statement. By using

this form of break, you can, for example, break out of one or more blocks of code. The

general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-

alone block of code but it can also be a block that is the target of another statement. When

this form of break executes, control is transferred out of the named block. The labeled block

must enclose the break statement, but it does not need to be the immediately enclosing block.

To name a block, put a label at the start of it. A label is any valid java identifier followed by a

colon. Once you have labeled a block, you can then use this label as the target of a break

statement.

Example code:

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if (t)

break second; // break out of second

block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.

This is after second block.

continue statement

 42

Java Programming (R16) Unit-I

In Java, when continue statement is encountered inside a loop, it stops the current iteration

and places the loop in next iteration. In while and do-while loops, a continue statement causes

control to be transferred directly to the conditional expression that controls the loop. In a for

loop, control goes first to the iteration portion of the for statement and then to the conditional

expression. For all three loops, any intermediate code is bypassed. Its syntax is quite simple,

just type keyword continue followed with a semicolon.

continue;

class Test {

public static void main(String[] args) {

int i=1;

while(i <= 5)

{

i = i + 1;

if (i==3)

continue;

System.out.print(" "+i);

 }

 }

}

Output

2 4 5 6

return statement

The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method. As

such, it is categorized as a jump statement.

 return expr/value;

Example:

class Test {

public static void main(String[] args) { //Caller Method

int a=3,b=4;

int x= add(a,b); //function call

System.out.println("The sum is "+x);

}

static int add(int x,int y) // called method

{

return (x+y);

}

}

Output
The sum is 7

After computing the result the control is transferred to the caller method, that main in this

case.

 43

